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Abstract

Modern database management systems (DBMSs) are tasked with analyzing terabytes of data,
employing a rich set of relational and machine learning operators. To process data at
large scales, research efforts have strived to leverage the high computational throughput
and memory bandwidth of specialized co-processors such as graphics processing units
(GPUs). However, scaling data management on GPUs is challenging because (1) the
on-board memory of GPUs has too little capacity for storing large data volumes, while
(2) the interconnect bandwidth is not sufficient for ad hoc transfers from main memory.
Thus, data management on GPUs is limited by a data transfer bottleneck. In practice, CPUs
process large-scale data faster than GPUs, reducing the utility of GPUs for DBMSs.

In this thesis, we investigate how a new class of fast interconnects can address the
data transfer bottleneck and scale GPU-enabled data management. Fast interconnects
link GPU co-processors to a CPU with high bandwidth and cache-coherence. We apply
our insights to process stateful and iterative algorithms out-of-core by the examples of a
hash join and k-means clustering.

We first analyze the hardware properties. Our experiments show that the high
interconnect bandwidth enables the GPU to efficiently process large data sets stored in
main memory. Furthermore, cache-coherence facilitates new DBMS designs that tightly
integrate CPU and GPU via shared data structures and pageable memory allocations.
However, irregular accesses from the GPU to main memory are not efficient. Thus, the
operator state of, e.g., joins does not scale beyond the GPU memory capacity.

We scale joins to a large state by contributing our new Triton join algorithm. Our
main insight is that fast interconnects enable GPUs to efficiently spill the join state by
partitioning data out-of-core. Thus, our Triton join breaks through the GPU memory
capacity limit and increases throughput by up to 2.5× compared to a radix-partitioned
join on the CPU.

We scale k-means to large data sets by eliminating two key sources of overhead. In
existing strategies, execution crosses from the GPU to the CPU on each iteration, which
results in the cross-processing and multi-pass problems. In contrast, our solution requires
only a single data pass per iteration and speeds-up throughput by up to 20×.

Overall, GPU-enabled DBMSs are able to overcome the data transfer bottleneck by
employing new out-of-core algorithms that take advantage of fast interconnects.
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Zusammenfassung

Moderne Datenbankverwaltungssysteme (DBMS) werden verwendet um Terabytes von
Daten zu analysieren, wobei eine Vielzahl von relationalen und maschinell lernenden
Operatoren eingesetzt werden. Um Daten in großen Massen zu verarbeiten, strebten
Forschungsversuche an, den hohen Rechendurchsatz und Speicherbandbreite von
spezialisierten Coprozessoren wie beispielsweise Grafikprozessoren (GPUs) zu nutzen.
Jedoch stellt die Skalierung der Datenverwaltung auf GPUs eine Herausforderung dar,
weil (1) der integrierte Speicher von GPUs zu wenig Kapazität für die Speicherung
großer Datenmengen hat, wohingegen (2) die Bandbreite des Interconnects nicht für eine
Ad-hoc-Übertragung aus dem Hauptspeicher ausreicht. Somit ist die Datenverwaltung
auf GPUs durch einen Datentransfer-Engpass begrenzt. In der Praxis verarbeiten daher
Hauptprozessoren (CPUs) große Datenmengen schneller als GPUs, was die Nützlichkeit
von GPUs für DBMSs verringert.

In dieser Dissertation untersuchen wir, wie eine neue Klasse von schnellen Interconnects
den Datentransfer-Engpass beheben und die GPU-gestützte Datenverwaltung skalieren
kann. Schnelle Interconnects verbinden GPU-Coprozessoren zu einer CPU mit hoher
Bandbreite und Cache-Kohärenz. Wir wenden unsere Erkenntnisse an, um zustands-
behaftete und iterative Algorithmen aus dem Coprozessor ausgelagert zu verarbeiten,
beispielshalber an einem Hash Join und an dem k-Means Clustering-Verfahren.

Wir analysieren zunächst die Hardware-Eigenschaften. Unsere Experimente zeigen,
dass die hohe Transferbandbreite der GPU ermöglicht, große, im Hauptspeicher gespe-
icherte Datensätze effizient zu verarbeiten. Zudem fördert die Cache-Kohärenz neue
DBMS-Designs, welche die CPU und die GPU über gemeinsam genutzte Datenstruk-
turen und auslagerbare Speicherallokationen eng integrieren. Allerdings sind ungleich
verteilte Zugriffe von der GPU aus auf den Hauptspeicher nicht effizient. Deshalb lässt
sich der Operator-Zustand von z.B. Joins nicht über die Speicherkapazität der GPU
hinaus skalieren.

Wir skalieren Joins auf einen großen Zustand, indem wir unseren neuen Triton
Join-Algorithmus einführen. Unsere wichtigste Erkenntnis ist, dass schnelle Interconnects
GPUs befähigen, den Join-Zustand durch ein externes Datenpartitionierungverfahren
effizient auszulagern. Somit durchbricht unser Triton Join die durch die GPU-Speicherka-
pazität gegebene Begrenzung und steigert den Durchsatz um bis zu dem 2,5-fachen im
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Vergleich zu einem Radix-partitionierten Join auf der CPU.
Wir skalieren k-Means auf große Datensätze, indem wir zwei Hauptlimitationen

beseitigen. Bei bestehenden Strategien wechselt die Ausführung bei jeder Iteration
zwischen der GPU und der CPU hin und her, was zu den Cross-Processing- und Multi-
Pass-Problemen führt. Im Gegensatz dazu erfordert unsere Lösung nur einen einzigen
Datendurchlauf pro Iteration und beschleunigt den Durchsatz um bis zu 20 Mal.

Insgesamt sind GPU-gestützte DBMSs in der Lage, den Datentransfer-Engpass zu
überwinden, indem sie neue, Zustands-auslagerbare Algorithmen einsetzen, die die
Vorteile schneller Interconnects ausnutzen.
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“There are no bounds to human thought.”

— Sergey Pavlovich Korolyov

1
Introduction

Large-scale data management has become a pillar of science and industry, enabling new
research fields, services, and business models [185, 242]. Earth monitoring satellites [89]
and genome sequencers [405] generate terabytes of data every day. Online services such as
Google Search [156] and Uber [143] are backed by petabytes of data. Database management
systems (DBMS) routinely ingest and manage these large data volumes[12, 38, 111, 164].

1.1 Motivation

In order to continue scaling data management as the progression of Moore’s Law slows
down [75, 134, 182, 186], co-processors such as GPUs, FPGAs, and ASICs have been
gaining adoption in research [47, 203, 257, 356, 415] and industry [90, 211, 238, 244,
355, 379] over the past decade. The entry barrier to co-processors is now low with
instant availabilty from all major cloud vendors, including Alibaba Cloud, Amazon
EC2, Google Compute Engine, and Microsoft Azure. Despite the growing adoption
and availability, in 2019 commercial GPU-enabled DBMSs occupied only a tiny 4.5–5.5‰
slice [269, 271, 433] in the $46 billion DBMS market [152]. GPU-enabled DBMSs are
found mostly in the form of research prototypes [79, 102, 146, 176, 274, 323], start-
ups [66, 82, 140, 184, 227, 313, 348, 392], and peripheral products [210, 380]. Major DBMS
vendors, such as Amazon, IBM, Microsoft, Oracle, SAP, and Snowflake, currently do
not integrate co-processors into the core of their DBMS products. In contrast, there is
wide-spread adoption in the deep learning [120, 289] and high performance computing
domains. For instance, 30% of the Top500 supercomputers support co-processors [402].
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Chapter 1. Introduction

Motivation 1: Data-intensive Query Processing. To outcompete CPUs in perfor-
mance benchmarks, GPU experts often assume that their input data are stored in the on-
board GPU memory [79, 147, 176, 322, 338, 374]. GPU memory provides high-bandwidth
access to the data, but has only a limited storage capacity and therefore cannot hold large
data volumes [22, 302]. In practice, GPU-enabled DBMSs scale to large data volumes by
storing data in CPU memory instead of in GPU memory [77, 102, 146, 244, 274, 340, 349, 424].
CPU memory has sufficient capacity to store large data volumes [23, 30, 198, 394], as
its capacity is two orders-of-magnitude greater than GPU memory [22, 306]. However,
moving data from CPU memory to the GPU reduces query performance because the data
are transferred over an interconnect. Consequently, database research points out that a
data transfer bottleneck is the main reason behind the comparatively slow adoption of
GPU-enabled DBMSs [45, 146, 161, 274, 349, 374, 424].

Motivation 2: Stateful Data Processing. During query processing, DBMSs require
additional memory to retain the intermediate state of the query [77, 103, 146]. Queries
involving state, e.g., joins, are considered a strong point of GPU-enabled DBMSs, as
keeping the state in GPU memory results in high query performance [171, 219, 288, 324,
357, 361, 364, 385, 395, 401, 420]. However, recent investigations reveal that a large state
size incurs memory contention [78, 274] and causes commercial GPU-enabled DBMSs to
fail query execution [102, 104, 147, 244, 324]. Thus, current GPU-enabled DBMSs are not
optimized to handle large state. We consider fragility in scaling the state size an obstacle
for building production-ready DBMS products.

Motivation 3: Iterative Algorithms. In addition to relational queries, modern
DBMSs [62, 178, 222, 236, 320, 369, 370, 429] and specialized systems [69, 70, 108, 237,
358, 391, 418] target machine learning queries. Machine learning queries differ from
relational queries in that they iterate over the same data, i.e., the working set, multiple
times [71]. Although GPU are able to quickly compute machine learning queries, GPU
execution strategies for, e.g., k-means, typically assume that the working set fits into
GPU memory [31, 40, 209, 233]. In effect, systems scale-out to multiple GPUs to manage
large data sets, which increases the cost of processing queries.

Overall, GPU co-processing does not scale to large data volumes. Currently, GPUs
are only able to speed-up short queries over small data sets, which have a small scope for
improvement. Hence, an opportunity is lost for state-of-the-art DBMSs to achieve faster
response times on those long-running, large-scale queries where performance matters.
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Chapter 1. Introduction

1.2 Research Challenges

In this thesis, we investigate the scalability limitations of GPU co-processing and analyze
how a faster interconnect helps us to overcome them. A new class of fast interconnects
provide GPUs with high-bandwidth, cache-coherent access to main memory. Recent
examples include NVLink 2.0 [297] and 4.0 [81], Infinity Fabric [2], and Compute Express
Link 2.0 [110]. Efficiently utilizing a fast interconnect in a GPU-enabled DBMS requires
us to reevaluate fundamental design decisions in order to adapt to the new hardware
properties.

We address the following research challenges in this work:
Challenge 1: Scalable Data-intensive Query Processing. In Chapter 3, we investigate

the principle limitations of GPU interconnects in the context of databases. We introduce
fast interconnects, and show by the example of NVLink 2.0 that a fast interconnect
improves the basic bandwidth and latency characteristics beyond PCI-e 3.0. Due to these
improvements, we conclude that GPUs are now capable of efficiently processing large,
out-of-core data sets. However, our measurements show that fast interconnects also lead
to new challenges, such as handling operators with a large state efficiently. The content
described in Chapter 3 was published at SIGMOD 2020 [261].

Challenge 2: Scalable and Robust Stateful Data Processing. In Chapter 4, we
propose the Triton join, a new join algorithm that efficiently handles large-scale joins for
which the join state exceeds the GPU memory capacity. Although fast interconnects
provide faster random-access bandwidth than PCI-e, the join throughput experiences a
sharp performance drop when the join state exceeds the GPU memory capacity. Thus,
large joins face the challenges of limited scalability and robustness. Previous approaches
avoid the transfer bottleneck by preprocessing data on the CPU and thereby reducing the
transfer volume. In contrast, we show that fast interconnects enable GPUs to efficiently
partition data out-of-core, and are thus able to scale to a large join state using exclusively
the GPU. With our Triton join, the principle limitation posed by the GPU memory
capacity is solveable with a throughput of more than 50% vs. a join with a small state.
The content described in Chapter 4 chapter was published at SIGMOD 2022 [262].

Challenge 3: Scalable Iterative Algorithms. In Chapter 5, we demonstrate that
iterative machine learning algorithms are able to process large data sets by examining
k-means and proposing a scalable GPU execution strategy. State-of-the-art execution
strategies accelerate k-means by extracting the compute-intensive parts and offloading
these computations to the GPU. However, as execution is split into a CPU phase
and a GPU phase, this execution strategy incurs data transfer overhead and misses

3
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optimization opportunities. On each iteration, the CPU and the GPU transfer the model
over the interconnect, and separately pass over the data. These overheads exacerbate as
the algorithm requires tens of iterations to converge [132]. As a result, the state-of-the-art
strategy executes slower than a CPU-only baseline. In contrast, we avoid the model
transfer overhead by proposing a new centroid update algorithm optimized for GPUs.
In a second optimization step, this enables us to fuse all phases of k-means into a single
data pass per iteration. Thus, our new GPU-only execution strategy efficiently scales
k-means to large data volumes. The content described in Chapter 5 was published as a
DaMoN 2018 short paper [260] and at Datenbanken Spektrum 2018 [259].

1.3 Contributions and Impact

During the course of our research, we have made the following contributions.

Conference Papers. We have published the main contributions of this thesis at top-tier
national and international conference venues:

• Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl:
Pump Up the Volume: Processing Large Data on GPUs with Fast Interconnects, in the
ACM International Conference on Management of Data, June 14–19, 2020, Portland,
OR, USA.

• Clemens Lutz, Sebastian Breß, Steffen Zeuch, Tilmann Rabl, and Volker Markl:
Triton Join: Efficiently Scaling to a Large Join State on GPUs with Fast Interconnects,
in the ACM International Conference on Management of Data, June 12–17, 2022,
Philadelphia, PA, USA.

• Clemens Lutz, Sebastian Breß, Tilmann Rabl, Steffen Zeuch, and Volker Markl:
Efficient and Scalable k-means on GPUs, in Datenbank-Spektrum 18(3): 157–169
(2018).

• Clemens Lutz, Sebastian Breß, Tilmann Rabl, Steffen Zeuch, and Volker Markl:
Efficient k-means on GPUs, in the 14th ACM Int. Workshop on Data Management
on New Hardware (DaMoN ’18), colocated with SIGMOD/PODS, Houston, TX,
USA, June 11th, 2018.

Follow-up Research. Our main contributions have inspired follow-up research on fast
interconnects which are not part of this thesis:
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• Alexander Kumaigorodski, Clemens Lutz, Volker Markl: Fast CSV Loading Using
GPUs and RDMA for In-Memory Data Processing, in Database Systems for Business,
Technology and Web, April 19th–June 21st, 2021, Dresden, Germany.

• Josef Schmeißer, Clemens Lutz, Volker Markl: Indexing Data to Scale Processing on
GPUs with Fast Interconnects, ongoing research.

Research Awards. Our works have been honored by the research community with two
awards and two badges. Pump Up the Volume: Processing Large Data on GPUs with Fast
Interconnects was awarded Best Paper at SIGMOD 2020 and Fast CSV Loading Using
GPUs and RDMA for In-Memory Data Processing was awarded Best Paper at BTW 2021.
These two works also received the Reproducibility Badges of their publication venues.

Teaching. Starting from the winter semester 20/21, our paper on Fast CSV Loading Using
GPUs and RDMA for In-Memory Data Processing is featured in the course Reproducibility
Engineering at the University of Passau and the Regensburg University of Applied
Sciences. Students reproduce our research results as part of their graded coursework.

Open Source Contributions. We have released all projects that are part of this thesis
under an open source license:

• https://github.com/TU-Berlin-DIMA/CL-kmeans. This repository contains our
OpenCL implementation of k-means [259, 260]. The project consists of two single-
processor execution strategies that are both able to run on either a CPU or a GPU,
and one hybrid CPU-GPU execution strategy. CL-kmeans is licensed under the
Mozilla Public Licence 2.0.

• https://github.com/TU-Berlin-DIMA/fast-interconnects. This repository
contains all sub-projects related to fast interconnects [261, 262]. These include our
Triton join, our hybrid hash table, no-partitioning joins and TPC-H Query 6 for the
CPU and the GPU, and interconnect microbenchmarks. Alongside the code, we
have documented our implementation techniques in detail. This project is licensed
under the Apache License 2.0.

Additional Contributions. The author of this thesis has published works on stream
processing in collaboration with other DIMA members. These papers are not related to
fast interconnects and not part of this thesis:
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• Steffen Zeuch, Bonaventura Del Monte, Jeyhun Karimov, Clemens Lutz, Manuel
Renz, Jonas Traub, Sebastian Breß, Tilmann Rabl, Volker Markl: Analyzing Efficient
Stream Processing on Modern Hardware, in The Proceedings of the VLDB Endowment,
Vol. 12, No. 5, Los Angeles, CA, USA, August 26th–30th, 2019.

• Adrian Michalke, Philipp Marian Grulich, Clemens Lutz, Steffen Zeuch, Volker
Markl: An Energy-Efficient Stream Join for the Internet of Things, in the 17th ACM
Int. Workshop on Data Management on New Hardware (DaMoN ’21), held online
with SIGMOD/PODS, June 21st, 2021.

1.4 Thesis Outline

The remainder of this thesis is structured as follows.
Chapter 2. We first provide background information on fast interconnects and

GPU-enabled DBMSs, which form the common ground for the subsequent chapters.
Chapter 3. Next, we investigate a fast interconnect. We present our insights on how

DBMS implementers should interact with the hardware, as well as the opportunities and
challenges facing DBMS designers. We additionally describe chapter-specific background
and related work in this and in the next two chapters.

Chapter 4. In this chapter, we contribute our Triton join algorithm. We detail the
random access characteristics of a fast interconnect. Based on these observations, we
design two new out-of-core radix partitioning algorithms. Then, we build our Triton
join on top of these partitioning algorithms.

Chapter 5. After that, we present our efficient k-means execution strategy. We show
our new centroid update algorithm for the GPU. On this basis, we optimize k-means for
out-of-core execution with a single data pass.

Chapter 6. In the final chapter, we draw conclusions from our findings and state our
perspective on how this thesis will contribute to future work.
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2
Background

Computer architecture and data management systems are fascinating topics with an
astounding depth. In this chapter, we summarize the scientific foundation of our
insights on these topics. In doing so, we focus on the aspects which we believe the data
management community are less familiar with. We begin with a brief overview of how
GPUs are programmed in Section 2.1, before examining GPU architectures in Section 2.2.
In Section 2.3, we cover interconnect architecture with an emphasis on fast interconnects.
We end our background by recapping GPU-enabled database management systems in
Section 2.4.

2.1 GPU Programming Frameworks

Programmers write code for GPUs using a GPU computing framework. GPU computing
frameworks consist of a programming language which compiles down to GPU assembly
language and a runtime that executes the code on the GPU.

Overview. Most GPU programming frameworks are vendor-specific and target
only GPUs. Nvidia provides the CUDA platform [304], AMD specifies the ROCm
platform [29] and HIP language [24], while Intel supplies the oneAPI platform [201]. In
contrast, OpenCL specifies a vendor-neutral language and runtime standard [224]. In
addition to GPUs, vendors have implemented OpenCL for central processing units (CPUs),
field-programmable gate arrays (FPGAs), and other processor types.

GPU Kernels. CUDA is based on C++ [304], whereas OpenCL C (i.e., OpenCL’s
language) extends the C language [224]. Both frameworks refer to functions that run on
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Figure 2.1: Hardware architecture of an Nvidia Volta GPU.

the GPU as kernels. When a program calls a kernel, the runtime launches the kernel on
the GPU. Inside of kernels, programmers have access to built-in functions that expose
GPU hardware functionality, e.g., thread synchronization and communication functions.
We highlight the relevant functionality in Section 2.2.4.

Compilation. In a first step, CUDA and OpenCL are compiled to PTX [304]. PTX
describes a low-level, device-independent intermediate representation of Nvidia’s
compiler [307]. Programmers can directly embed PTX instructions into CUDA programs
as inline assembly to access advanced GPU functionality not exposed by the programming
language [305]. In a final step, the compiler transforms PTX into a binary native to the
specific GPU architecture [304].

Summary. GPU programming frameworks provide a high-level interface to the GPU
hardware by means of programming languages that are familiar to systems programmers.
Although we program the software artifacts accompanying this thesis using the CUDA
and OpenCL frameworks, the concepts extend to other frameworks as well.

2.2 GPU Architecture

The hardware architectures of GPUs are designed for high-throughput processing. In
Section 2.2.1, we give an overview of GPU architectures and their features. After that,
we describe GPU thread execution in Section 2.2.2 and why control flow can limit
performance in Section 2.2.3. In Section 2.2.4, we outline the hardware functionality
responsible for thread synchronization and communication.

2.2.1 Overview

Modern GPU architectures all follow similar high-level design patterns. Recent examples
are the Nvidia Volta [99, 297], Ampere [302], and Hopper [308], AMD CDNA [18] and
CDNA 2 [22], and Intel Ponte Vecchio [68] architectures. We focus on the Nvidia Volta
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GPU architecture, as most of our experiments in Chapters 3–5 are performed on the
Nvidia Tesla V100 GPU model [297]. In cases where significant differences exist, we
contrast Volta to the other GPU architectures.

In Figure 2.1, we show the architecture of an Nvidia Volta GPU. Volta GPUs consist of
up to 84 streaming multiprocessors (SMs) [297]. SMs are paired in texture processing cluster
(TPC), and seven TPCs are grouped into a graphics processing cluster (GPC) for a total of
six GPCs [297]. The GPU executes threads in parallel on all SMs. Each SM schedules
threads in hardware [254] to hide memory latencies of up to 2 µs [141]. To efficiently
schedule threads, the SM stores thread contexts in 65 thousand registers [297]. SMs
physically execute 32 threads together as a warp [99]. The threads of a warp typically
share a program counter [13, 254], but in Volta and newer GPUs each thread has its own
program counter [297] (see Section 2.2.3). The AMD CDNA and RDNA architectures
reduce the native warp size to 32 threads [17, 18, 22], i.e., the same size as Nvidia GPUs,
instead of the 64 threads of previous AMD architectures [13, 15]. GPU programming
languages abstract up to 32 warps (i.e., 1024 threads) as a thread block [21, 304]. Each
thread block has access to scratchpad memory, which is a fast software-managed cache
inside the SM [99]. The GPU caches memory accesses in its L1 and L2 caches [99]. A
crossbar interconnect connects the SMs to GPU memory and an I/O hub [296]. The I/O
hub has PCI-e and NVLink controllers that link the GPU to the host system and peer
GPUs [296]. The I/O hub also contains multiple DMA copy engines1 [296], to which GPU
programs can offload asynchronous data transfers [303].

2.2.2 Thread Execution

In order to sustain a high computational throughput, GPUs are designed to execute
thousands of threads in parallel [246, 254]. Specializing the hardware architecture
for parallel processing instead of single thread performance increases efficiency, as
speculative out-of-order cores consume five times more energy and die area compared
to simple cores [67, 371].

Instructions take several cycles to execute (e.g., 4 cycles for an addition [34]), and
memory accesses can take hundreds of cycles [34, 208]. These instruction and memory
latencies can cause thread execution to stall until the dependencies of the next instruction
are ready [254, 408]. To hide these latencies, the GPU schedules a different thread
and continues execution [254, 408]. When a GPU kernel begins execution, a global
thread block scheduler distributes thread blocks among the SMs [293]. The thread

1CUDA shows three DMA engines for NVLink models, and seven DMA engines for PCI-e models.
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block scheduler uses a most room policy, which takes available hardware resources into
account, e.g., scratchpad memory, registers, and threads [155]. Each SM then statically
assigns warps to one of four sub-cores [208]. Each sub-core has a warp scheduler that
fetches warp instructions from the L0 instruction cache and assigns each instruction to a
dispatch unit [99]. The scheduling policy of the warp schedulers in Nvidia GPUs is not
publicly known [204, 221], but a greedy-then-oldest policy [354] is commonly assumed by
simulators [3, 187]. In contrast, AMD RDNA [17] and Intel Xe MAX [199] documentation
specifies the greedy-then-oldest policy. Greedy-then-oldest continuously schedules a
single warp until it stalls, and schedules the oldest (by instantiation time) ready warp
next [354]. Volta GPUs have four types of dispatch units: a branch unit, a math unit, a
memory and I/O unit, and a tensor unit [99]. Each dispatch unit dispatches the instruction
to multiple execution units specialized for the data type [99], similar to a SIMD core [254].
In contrast to the other dispatch units, the memory and I/O unit is shared by the four
sub-cores [99]. The memory and I/O unit coalesces (i.e., groups) the memory accesses of 8
threads into a single memory transcation, which it dispatches to the L1 data cache [221].
Coalescing memory accesses improves memory transfer efficiency [118, 291] and reduces
the memory address translation request rate [347]. Even though the scheduler and
dispatch units are single-issue [99], a sub-core can execute an integer and a floating-point
instruction simultaneously [297, 311].

2.2.3 Control Flow andWarp Divergence

GPUs adhere to a single instruction, multiple threads (SIMT) model [254]. The SIMT
model provides programmers with a multithreading abstraction for executing on SIMD
hardware. SIMT differs from single instruction, multiple data (SIMD) in that SIMT threads,
in contrast to SIMD lanes, are able to perform control flow (i.e., nested branch and loop
statements) [304]. In this section, we first describe the current hardware implementations,
and then give advice on effective GPU programming and summarize our findings.

Control Flow Reconvergence Schemes

In the SIMT model, branches are physically executed by masking execution units [133].
A thread-active mask marks each thread of a warp as active or inactive, and the warp
executes all taken branches. A warp diverges when its threads take different branches
and reconverges afterwards.

Hardware vendors have implemented control flow using two different reconvergence
schemes: stack-based reconvergence [106, 145, 414] and thread frontiers [125, 126]. We
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briefly describe these schemes in the following.
Stack-Based Reconvergence. Control flow is statically handled by the compiler

for AMD GPUs [19, 25] and Nvidia GPUs up until Pascal [297]. The compiler emits
instructions to build a stack of branch targets, which include a thread-active mask for
each branch. By popping branch targets from the stack, the GPU executes all possible
paths through the control flow graph, and reconverges the warp at a predetermined
reconvergence point. In this scheme, the warp always executes in lock-step, as the warp
shares a program counter.

Thread Frontiers. Starting with the Volta and Sandy Bridge architectures, Nvidia [307]
and Intel GPUs [125] dynamically reconverge warps at runtime (Nvidia calls this scheme
independent thread scheduling [297]). The compiler emits branch and reconvergence
instructions at all potential divergence and reconvergence points, but does not enumerate
paths. Instead, the GPU evaluates which paths are taken during execution, and executes
all taken paths. In contrast to stack-based reconvergence, each thread has its own
program counter. Divergent branches cause the program counters to contain different
addresses, and threads reconverge if their program counters point to the same instruction.
Thus, a subset of the warp may opportunistically reconverge and execute a common
instruction block.

Effective Control Flow Programming

In both reconvergence schemes, GPU programmers should limit divergent control flow
to warps instead of branching in individual threads. Warp divergence leads to inefficient
execution in both reconvergence schemes, as the sub-cores execute divergent paths
sequentially [297]. During divergent paths, the execution units are partially idle. In
contrast, divergent paths taken by different warps do not cause warp divergence [55, 56].
As a result, per-warp control flow usually performs better than per-thread control flow.

The thread frontiers scheme enables advanced data structures that are not possible to
implement with stack-based reconvergence. In the stack-based reconvergence scheme,
if a thread blocks, e.g., due to spinning on a lock, then the warp does not make
progress [99]. Furthermore, warp barriers are subject to complex rules regarding
undefined behavior [307]. This results in deadlocks when implementing, e.g., spin-
locks [297, 310]. In contrast, thread frontiers (as implemented by Volta GPUs) guarantee
forward progress for each thread and the soundness of thread barriers at sub-warp
granularity [99]. In his Bachelor’s thesis, Phillip Grote showed that these guarantees are
sufficient to implement lock-based data structures on GPUs [162]. In some cases, lock-
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based synchronization strategies reduce the implementation complexity of thread-safe
algorithms while retaining a high performance [135].

Summary

Overall, algorithms should control their flow at the granularity of warps instead of
threads to avoid warp divergence. If per-thread control flow is unavoidable, modern
GPU architectures handle the resuling warp divergence robustly.

2.2.4 Thread Synchronization and Communication

GPUs were initially designed to execute in a bulk-synchronous-parallel programming
model [254]. However, recent parallel algorithms employ complex parallel programming
patterns such as parallel aggregations [219, 357], the producer-consumer pattern [275,
323], thread-safe linear memory allocators [146, 395], and lock-free data structures [8, 232].

These techniques rely on GPU architectures that execute threads using the shared
memory programming model [258] and support inter-thread synchronization and
communication [295]. The execution of memory operations adheres to the semantics
defined by a formal memory consistency model [258, 307]. Furthermore, the hardware
exposes primitive operations (i.e,. primitives) that synchronize and communicate between
threads [304, 307]. We categorize the primitives by their functionality into memory
fences, thread barriers, atomic memory operations, and warp-level primitives. In the
following, we describe the memory consistency model as well as the communication
and synchronization primitives.

Memory Consistency Model. Correctly programming GPUs is challenging due to
their weak memory consistency model [9, 390]. Lustig et al. specify a formal memory
consistency model [258] based on the natural language specification provided by Nvidia
for Volta and newer GPUs [307]. We briefly summarize the model.

Generally, memory consistency models are classified as either strong or weak [284]. A
strong model retains the order of memory operations performed by the same thread,
whereas a weak model relaxes this constraint to allow more reordering optimizations [284].
Nvidia defines a weak memory consistency model for PTX [258].

As depicted in Figure 2.2, CUDA and PTX bound inter-thread synchronization and
communication to one of three scopes: thread block, GPU, and system [304, 307]. Scopes
reduce the number of threads which are able to interact with each other’s memory
operations [307]. In particular, read-modify-write operators (e.g., atomic compare-and-
swap) are atomic only in their defined scope [307]. In contrast, all loads and stores are
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Figure 2.2: Memory model supports scoping of atomic mem-
ory operations such as atomicAdd.

Figure 2.3: The memory fence
ensures that the critical section
is executed after acquiring and
before releasing the lock.

Figure 2.4: A thread barrier
synchronizes threads before
permitting them to start the
next computation step.

atomic by way of the "no thin air" axiom — a loaded value must have been written by a
store instead of speculatively resulting from an execution [258, 307]. However, CUDA
exposes weak and volatile loads and stores, which are not thread-safe in regard to atomic
read-modify-write operators [307].

Memory Fences. Memory fences establish an order between regular memory opera-
tions, as reordering operations across the fence is forbidden [304].

For example in Figure 2.3, when implementing a spinlock, the lock must be acquired
before entering the critical section and released after exiting the critical section. In this
case, imposing an order on memory operations is necessary to guarantee the correctness
of the lock. However, the critical section (or parts thereof) could be reordered, e.g., to
occur before the lock is acquired. Thus, a memory fence with an appropriate scope is
required to separate the (un-)locking critical section.

Thread Barriers. A thread barrier synchronizes a group of threads, and is typically
placed at the end of a parallel computation step (see Figure 2.4). Explicit thread barriers
are defined for the warp and the thread block granularities [304]. A GPU-wide barrier is
implicitly set at the kernel completion boundary [304]. Programmers are also able to
explicitly synchronize SMs on Volta GPUs [297]. Thread barriers guarantee an ordering of
memory operations for the threads participating in the barrier, i.e., a memory fence [304].

Atomic Memory Operations. The shared memory programming model allows
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Figure 2.5: With atomic
memory operations such as
atomicAdd, multiple threads
can safely access the same
memory location.

Figure 2.6: Warp-level prim-
itives, e.g., __shfl_sync, en-
able a warp to shuffle values
between threads inside of GPU
registers.

threads to mutate shared data using atomic memory operations (atomics) [304]. As
shown in Figure 2.5, an atomic memory operation modifies a primitive data type (e.g.,
integers) by reading its current value from memory, performing a modification, and
writing back the new value to memory (i.e,. read-modify-write) without interference from
other threads [304]. The targeted data value may be stored either in GPU memory or in
scratchpad memory [307]. Although the first GPU architectures implement atomics in
software, Pascal and newer GPUs efficiently execute atomics in hardware [207, 296].

Read-modify-write refers to a set of arithmetic and bitwise functions [304]. The most
important atomics for this work are atomicAdd, atomicCAS, and atomicExch. atomicAdd
atomically adds a value to a sum and returns the previous sum. We use atomicAdd to
allocate array slots to threads, and to aggregate values computed by different threads.
atomicExch atomically swaps two values. We use atomicExch to prepend elements
to a linked list in closed addressing hash tables. atomicCAS (i.e., compare-and-swap)
atomically swaps two values if an equality predicate is true. For example, we use
atomicCAS to insert elements into a thread-safe hash table (see Section 2.4.2).

Atomic memory operations are supported only for particular data types, predomi-
nantly 32-bit and 64-bit unsigned integers [304]. In contrast to recent CPUs [188, 193],
Maxwell and newer GPUs natively support atomic addition of floating point num-
bers [296], but do not support 128-bit atomicCAS and signed integer additions [304].
These limitations are relevant for data management, as SQL integers are signed [266]
and swapping 64-bit pointers with 64-bit atomicCAS leads to the ABA problem [119].
The ABA problem occurs because a given pointer A references a value but does not
define the value: when A is swapped for another pointer B and then back to A, the value
referenced by A might have changed.

Warp-level Primitives. The threads of a warp are able to communicate within
registers via warp-level primitives, illustrated in Figure 2.6. GPUs have primitives for
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data shuffling, matching, and reduction, as well as predicate voting [304]. Warp-level
primitives are able to replace atomic memory operations if communication takes place
at the warp granularity instead of at the thread block granularity [295].

For this thesis, the relevant functions are __any_sync, __ballot_sync, and
__shfl_sync. Of these, __any_sync and __ballot_sync are warp vote functions, which
evaluate a predicate per thread. The former returns a non-zero value if any predicate is
true, whereas the latter returns a bitset containing all predicates. The predicate bitset is
useful for computing prefix sums and electing a leader thread [253]. With __shfl_sync,
threads retrieve a value provided by a different thread.

Summary. To efficiently manage thousands of threads, programmers should limit the
scope of communication and synchronization operations. Hardware executes narrowly-
scoped primitives with a higher performance than widely-scoped primitives. Designing
algorithms to take advantage of these hardware features often speeds-up execution by
1.2–5.3× [147, 321, 322, 357].

2.3 Interconnect Architecture

Processors communicate with each other via interconnects. Despite their central role in
the system, few works in the DBMS literature study interconnects in depth. Thus, we
provide background information on interconnect technologies.

In Section 2.3.1, we first review how hardware and software interact to transfer
data over the current PCI-e interconnects. Fast interconnects offer new, performance-
enhancing features, which leads us to define fast interconnects as a distinct class of
hardware in Section 2.3.2. Based on our definition, we provide an overview of the recent
and future fast interconnect technologies offered and planned by different hardware
vendors in Section 2.3.3. We then provide a detailed description of the interconnect
architecture: data transmission (Section 2.3.4), address translation (Section 2.3.5), and
cache-coherence (Section 2.3.6). We summarize in Section 2.3.8 by showing the overall
architecture of NVLink 2.0, which is the fast interconnect we focus on in this thesis.

2.3.1 Data Transfer

State-of-the-art systems connect GPUs with a PCI-e 3.0 [7] or 4.0 [326] interconnect. Pe-
ripheral component interconnect express (PCI-e) implements transfer primitives in hardware
on which programming frameworks build software APIs to transfer data.

Transfer Primitives. PCI-e provides two data transfer primitives: memory-mapped
I/O (MMIO) and direct memory access (DMA). MMIO maps GPU memory into the
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Figure 2.7: The distinguishing properties of fast interconnects.

CPU’s address space. The CPU then initiates a PCI-e transfer by accessing the mapped
GPU memory with normal load and store instructions. In contrast, DMA allows the GPU
to directly access CPU memory. The key difference to MMIO is that DMA only allows
access to a predetermined range of pinned memory. Memory is “pinned” by locking the
physical location of pages, which prevents the OS from moving them. DMA operations
can thus be offloaded to data copy engines. These are dedicated hardware units that
facilitate both bidirectional transfers and overlapping transfers with computation.

Software APIs. CUDA [304] exposes these two primitives through three abstractions.
cudaMemcpyAsync copies pageable (i.e., non-pinned) memory through MMIO, but copies
pinned memory using DMA copy engines. In contrast, Unified Virtual Addressing exposes
“zero-copy” pinned memory to the GPU via DMA. Finally, Unified Memory transparently
moves CPU pages to GPU memory. The page migration is triggered by a memory access
to a page not present in GPU memory. The operating system receives a page fault, and
moves the requested page from CPU memory to GPU memory [432]. To avoid the
page fault’s latency, pages can be explicitly prefetched using cudaMemPrefetchAsync.
Although Unified Memory is built on the aforementioned transfer primitives, CUDA
hides the type of memory used internally. We derive transfer methods based on these
software APIs in Section 3.3, and evaluate their performance in Section 3.6.2.

In summary, PCI-e data transfers are orchestrated in software and thus processors
do not interact directly in hardware.

2.3.2 Fast Interconnects: A Definition

PCI-e interconnects lack hardware features which are important to efficiently manage
data on GPUs. We provide a definition of fast interconnects based on a set of properties,
and reason why these properties are necessary for data management.

Definition. We define a “fast interconnect” to have two distinguishing properties
which we illustrate in Figure 2.7: the aggregate bidirectional interconnect bandwidth
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approximately matches the per-socket CPU memory bandwidth and the interconnect
is cache-coherent. In our definition, cache-coherence means that the hardware natively
supports a system-wide address space, data-dependent accesses to pageable memory,
and system-wide atomic memory operations.

Rationale. We justify why our definition requires high bandwidth and the four cache-
coherence sub-properties. One, sufficiently high interconnect bandwidth is necessary to
level the playing field between the GPU and the CPU. Without high bandwidth, the
GPU cannot efficiently access CPU memory (and vice-versa). Two, cache-coherence
(excluding the subsumed properties) is necessary because CPUs transparently cache data.
Without cache-coherence, programmers must manage caches manually to avoid accessing
stale data. Three, without a system-wide address space, programmers must manually
translate pointers in order to move them from one processor’s address space to the next.
Four, without pageable memory access, memory accessed from a different processor
must be pinned beforehand. Five, without atomic memory operations, processors cannot
share and mutate data at a fine granularity. Overall, these properties work together to
make memory accesses and memory management faster and more convenient.

Practical Limitations. Processors are free to take advantage of only a subset of the
interconnect’s features. For example, IBM POWER9 CPUs do not achieve the peak
bandwidth of NVLink 2.0 [191], and the L1 caches of current GPUs do not implement
cache-coherence in hardware [99, 279]. Consequently, the programmer must deal with
these shortcomings, e.g., by managing the cache-coherence of the GPU’s L1 cache in
software. However, the interconnect must support all features to avoid restricting
processors to the intersection of their feature sets.

Conclusion. In our fast interconnect definition, we specify properties that comple-
ment each other and form a basis on which DBMSs can tightly integrate co-processors.
Thus, a fast interconnect provides DBMSs with the means to resolve the data transfer
bottleneck from a hardware perspective.

2.3.3 Fast Interconnect Technologies

The class of fast interconnects includes technologies from multiple hardware vendors. At
present, these include Nvidia NVLink [130, 297, 302, 308], AMD Infinity Fabric [18, 22],
and Intel Compute Express Link (CXL) [109, 110] for GPUs. Fast interconnects are
also available for FPGAs with the IBM Open Coherent Accelerator Processor Interface
(OpenCAPI) [314, 315], Arm Cache-Coherent Interconnect for Accelerators (CCIX) [30,
92, 330, 417], and CXL [148, 417]. Other fast interconnects such as Gen-Z and Intel UPI
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will be superseded by CXL [154, 196].
Comparison. In Table 2.1, we compare fast interconnects with the current PCI-e

versions. We list the year by the availability of the first GPU or FPGA product, and note
the interconnect bandwidth per transfer direction. We focus on CPU-GPU connections,
but some interconnects can also connect multiple GPUs in mesh or switched topologies.

Fast interconnects provide high bandwidth to CPU memory in the case of NVLink
and Infinity Fabric. NVLink 4.0 and NVLink-C2C are related by their capabilities,
although they serve different purposes: NVLink 4.0 connects multiple GPUs [308],
whereas NVLink-C2C integrates CPUs with GPUs [130]. CXL offers the same bandwidth
as PCI-e 5.0, as these technologies share the physical layer. In contrast to the PCI-e
standards, fast interconnects feature address translation services and cache-coherence
in hardware. Although address translation and atomics can optionally be added to
PCI-e [7, 325, 326, 327], these features are not supported by GPUs in practice [24, 304].
Although CXL and OpenCAPI compliance is possible without cache-coherence, these
interconnects classify GPUs (and FPGAs) as cache-coherent accelerators [109, 396].

Summary. Although fast interconnects are not yet mainstream, GPU and FPGA
vendors are actively developing new fast interconnects. Standardization efforts such
as CCIX and CXL are ongoing and could result in more wide-spread adoption in the
hardware industry.

2.3.4 Data Transmission

The high performance of fast interconnects results from data transmission optimizations.
We categorize the optimizations by the performance metric they primarily affect, i.e.,
bandwidth or latency.

Bandwidth Optimizations

Hardware designers improve the bandwidth by increasing the rate at which data are
physically transmitted over the wires and by reducing interconnect protocol overheads.
These approaches complement each other, and we show examples for both cases.

Signaling Rate. Fast interconnects operate at high clock frequencies to increase the
signaling rate. For example, NVLink 2.0 operates at 25 GHz to transmit data at 25 Gbit/s
per wire pair [297] and NVLink 3.0 transmits data at 50 Gbit/s per wire pair [100], which
are 1.6× and 3.2× faster than PCI-e 4.0 [326], respectively. However, the high signaling
rates of NVLink rely on substrate materials with tight electrical tolerances [105].

Interconnect Width. Widening the interconnect by adding more wires increases the
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data rate. PCI-e specifies a lane as two differential wire pairs with one pair per transfer
direction, i.e., four wires in total [326]. In contrast, NVLink 1.0 specifies a bidirectional
link as 32 wires [141], which is reduced to sixteen wires in NVLink 3.0 [302, 308] and to
only eight wires in NVLink 4.0 [308]. Bit sequences are split into flits (flow control digits),
each of which is striped over the wires of a lane (or link) [272]. Flits are multiplexed over
all lanes (or links) [110, 316, 326], e.g., 16 PCI-e lanes are typically bundled to connect
GPUs. Moreover, NVLink generations continuously increase the number of links from
four in NVLink 1.0 [141] to six in NVLink 2.0 [297], twelve in NVLink 3.0 [100], and
eighteen in NVLink 4.0 [308].

Encoding Scheme. Sending more bits per clock cycle also results in a higher data rate.
Interconnects transmit digital signals by encoding them into analog signals using encoding
schemes such as non-return-to-zero (NRZ) and four-level pulse amplitude modulation
(PAM-4). NRZ encodes a zero as a low-voltage signal, and a one as a high-voltage
signal [334]. In contrast, PAM-4 encodes two bits into four different voltage levels,
which doubles the data rate at the cost of a worse signal-to-noise ratio [194]. PCI-e 6.0
departs from NRZ and instead uses PAM-4 to avoid increasing the interconnect clock
frequency [376].

Block Code. Encoding schemes work in conjunction with a block code to facilitate clock
recovery [334]. Modern interconnects are self-clocked (i.e., serial interconnects), which
means that the receiver infers the transmitter’s clock signal via clock recovery, instead of
relying on an explicit clock signal sent over a dedicated wire [272]. A block code, e.g., the
8b/10b code of PCI-e 1.0 and 2.0 [376, 411], breaks long runs of only zeroes or only ones
by transcoding 8-bit sequences into 10-bit sequences of limited runlengths [192, 411]. As
a 8b/10b code incurs 20% overhead, recent interconnects specify low-overhead 64b/66b
and 128b/130b block codes instead [109, 376, 396].

Packet Header Size. Data are sent over interconnects in the form of packets [92, 109,
141, 272, 396]. In PCI-e, packets consist of a payload of up to 512 bytes and a 20–28 byte
header [287]. In contrast, fast interconnects reduce the overhead incurred by the header.
For example, NVLink packets consist of a 16 byte header for 1–256 payload bytes [141].

Latency Optimizations

Higher bandwidth directly reduces latency, as serializing each digital packet into an
analog signal takes less time [113]. Despite this, neglecting latency in the interconnect
design results in a high latency [280], such as for PCI-e [287]. Thus, hardware vendors
aim to the reduce latency of fast interconnects by design.
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Flits. Fast interconnects transmit data as fixed-length flits instead of variable-length
frames [109, 141, 396]. A flit (i.e., flow control digit) defines the minimum transmission
unit as a fixed-length bit sequence [113]. For example, flits in OpenCAPI are 64 bytes
long and aligned at a 16 byte offset [396]. In contrast, PCI-e 1.0–5.0 transmits data as
frames, which denote their start and end with special framing tokens [326, 376]. Frames
require complex receiver logic to find frames in the transmitted bit stream, and to rotate
the bytes for the decoder [396]. Thus, flits lower the interconnect latency in comparison
to frames [376, 396]. Shortening the flit size further reduces latency, as transmitting a
small flit takes less time [377]. For example, NVLink 1.0 [141] has 16× smaller flits than
PCI-e 6.0 [376] (16 bytes vs. 256 bytes).

Forward Error Correction. Recent interconnects correct errors by retransmitting faulty
packets, along with all subsequent packets following a fault packet [98, 109, 141, 316, 376].
Thus, retransmission adds latency because it requires an additional roundtrip over the
interconnect and blocks the data stream from proceeding [114]. Instead, PCI-e 6.0
performs forward error correction (FEC) [376]. The receiver corrects most, but not all,
errors by applying an error correction code (ECC), which is appended to each flit [376].
Forward error correction is necessary for interconnects with a high bit error rate due to,
e.g., a PAM-4 encoding scheme [100, 376], which may become more prevalent in future
interconnects [377].

Summary

Fast interconnects optimize bandwidth and latency to achieve high performance. This
performance is the result of rapidly integrating technological advancements on the
physical and protocol layers to improve the data rate and reduce protocol overheads.
In contrast to PCI-e, fast interconnects specialize for performance over interoperability,
e.g., by sacrificing backward compatibility, adding design constraints, and tightening
manufacturing tolerances.

2.3.5 Address Translation

Hardware and the operating system work together to translate addresses from a program’s
virtual address space to the physical address space provided by the hardware [180]. GPUs
support address translation [13, 254], which enables a unified virtual address space
consisting of CPU memory and GPU memory [296, 304]. However, GPUs cannot directly
access pageable CPU memory, and instead require pinned memory (see Section 2.3.1).

We briefly provide an overview of address translation, and how fast interconnects
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Figure 2.8: Address translation architecture of a system with
a fast interconnect.

support it. After that, we describe the challenges of fully integrating GPUs into the
system-wide address space, and the solutions employed by recent hardware.

Overview

As an example, we show the translation architecture of an IBM AC922 system [290] with
an IBM POWER9 CPU and an Nvidia V100 GPU in Figure 2.8.

A memory management unit (MMU) is responsible for address translation [60]. The
MMU looks up translations by walking a per-process page table, which is stored in
memory [60]. Page table walkers accelerate address translations by performing multiple
walks in parallel and operating asynchronously to the processor cores [60]. Translations
are cached in translation lookaside buffers (TLBs) [60]. Modern processors have multiple
TLB levels (e.g., an L1 TLB and an L2 TLB), and each CPU core (or GPU SM) has a private
L1 TLB [60, 217]. CPUs may additionally contain an input/output memory management
unit (IOMMU) and an input/output translation lookaside buffer (IOTLB) [58]. The IOMMU
and IOTLB translate DMA accesses issued by PCI-e devices (and other interconnects) to
CPU memory addresses [58].

Address Translation Support in Fast Interconnects

The PCI-e address translation services (ATS) specification [325, 326, 327] serves as a basis
for CCIX and CXL [91, 109]. The ATS specification defines a protocol for co-processors
to request translations from an IOMMU. The optional page request services extend the
protocol to handle page faults.

For cache-coherent co-processors, CXL lifts the PCI-e ATS from an optional extension
to a mandatory feature in its CXL.cache sub-protocol [109]. In contrast, CCIX always
requires address translation, either via PCI-e ATS or a co-processor MMU which natively
walks the host page table [91].
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Instead of relying on PCI-e ATS, OpenCAPI and NVLink 2.0 specify their own address
translation protocols. In OpenCAPI 3.0, the IOMMU translates all addresses [314].
OpenCAPI 4.0 additionally permits the co-processor to contain a TLB [315]. In contrast,
Nvidia Volta GPUs, which are the only co-processors capable of NVLink 2.0, have a TLB
that requests translations from the IOMMU [99].

However, no details have been released to the public on how Infinity Fabric and
NVLink 4.0 translate addresses.

MMU and TLB Design Challenges

Efficiently implementing address translation in hardware presents many challenges. We
discuss five challenges which are relevant for fast interconnects:

Parallel Translation Requests. GPUs are able to issue thousands of memory requests
in parallel, which can incur hundreds of TLB lookups [241] and thousands of concurrent
page table walks [347]. The standard TLB designs employed by CPUs cannot handle
this high TLB request rate, which leads to a bottleneck [337].

High TLB Miss Rate. In contrast to CPU applications, GPU programs exhibit poor
temporal locality and therefore experience a high TLB miss rate [205, 347, 381].

High TLB Miss Latency. Resolving a GPU TLB miss in GPU memory incurs a high
latency of several hundred cycles [217, 239, 273]. For integrated GPUs (i.e., accelerated
processing units), the GPU miss latency can be an order-of-magnitude higher than for
the CPU due to the IOTLB [406].

Efficient Page Fault Support. Accessing pageable memory (instead of pinned
memory) incurs page faults when the accessed pages are not mapped in the GPU’s page
table [296]. Nvidia Pascal and newer GPUs support page faults, but these are handled
in software [296]. According to the specification, PCI-e is able to process page faults in
hardware [153, 400, 406] if the hardware supports the optional ATS and page request
interface extensions [325, 326, 327]. However, recent GPUs do not support pageable
memory access via PCI-e [24, 304]. Thus, the GPU relies on the CPU to handle its page
faults, which results in poor performance [151, 432].

IOTLB Management Overhead. The operating system sets up a dedicated page
table for the IOMMU, which is managed separately from the system page table accessed
by the CPUs [58]. Handling GPU page faults requires the GPU to interrupt the CPU,
which resolves the page fault in software [406]. Mapping and unmapping pages causes
the CPU to invalidate stale TLB entries by requesting an IOTLB shootdown, which must
be relayed to the GPU TLB [6, 406]. Therefore, managing the IOTLB incurs overhead [6].
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MMU and TLB Design Solutions

Recent GPUs and IOMMUs address these challenges as follows:
Post-Coalescer MMU. GPUs coalesce memory accesses to reduce the number of

memory accesses (see Section 2.2). By placing the TLB behind the coalescing unit, the
number of translation requests are reduced as well [337, 347]. This design allows GPU
MMUs to cope with a high number of parallel translation requests.

Page Table Compression. Memory allocators often map adjacent virtual pages to
adjacent physical pages [335, 336]. GPU MMUs exploit this behavior by opportunistically
fetching a cacheline of page table entries (i.e., 128 bytes [208, 221] ≡ sixteen entries [299])
with one memory access and then compressing these page table entries into a single TLB
entry if they are adjacent [121, 122, 335, 336]. Without compression, sixteen pages occupy
960 bits (120 bytes) in the TLB [121, 122]. The TLB compresses sixteen contiguous pages
as a memory address and the number of pages to only 75 bits, and adjacent pages as a
base address with 16 offsets to 411 bits [121, 122]. Thus, the TLB achieves compression
ratios of up to 12.8×, thereby extending the TLB range and reducing the TLB miss rate.

Large Page Sizes. In addition to compressing page table entries, GPUs support large
page sizes [299]. Large pages with, e.g., a size of 2 MiB lower the number of pages
(and thus TLB entries) needed to cover a given memory range, and lessen the TLB miss
rate [42, 347, 406].

Page Walk Cache. The TLB miss latency is affected by the number of memory accesses
required to perform the page table walk [51]. GPU page tables are organized as radix
trees up to five levels deep [299]. To translate an address, a page table walk might access
up to five different memory locations, i.e., one per tree level [51]. To avoid traversing the
full tree, modern CPUs feature a page walk cache, which cache the upper levels [51]. With
a page walk cache, ideally only one memory access (i.e., to the leaf node) is sufficient to
walk the page table. IOMMUs contain a page walk cache [27, 37, 190, 202], and research
has evaluated the benefit for GPUs [347]. In contrast, it is unclear if commercial GPUs
contain a page walk cache.

IOMMU Page Table Walkers. Recent IOMMUs include multiple hardware page
table walkers to efficiently resolve page faults [37, 64, 65, 190, 191]. Handling the page
faults in hardware enables the GPU to access pageable memory [99]. Furthermore,
parallelizing the page table walks increases translation throughput of the IOMMU, which
avoids stalling GPU threads [337, 347, 381, 382].

Single Page Table. Modern IOMMUs are capable of directly accessing the standard
page table used by the CPUs [27, 37, 191]. Instead of maintaining a dedicated page table
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for the IOMMU, the operating system manages a single, system-wide page table. Thus,
new mappings added to the page table are immediately available to the GPU [191].

Summary

In conclusion, fast interconnects upgrade address translation from a software feature to an
integral part of the hardware. By performing translations using an IOMMU and caching
them in the GPU TLB hierarchy, GPUs become capable of accessing memory system-wide.
In return, CPUs are also able to directly access GPU memory. In effect, address translation
places GPUs and CPUs on an equal level regarding memory management.

2.3.6 Cache-Coherence

CPUs come with cache-coherence out-of-the-box. In contrast, GPUs do not maintain
coherence among their caches.

We motivate why cache-coherence is important for systems with CPUs and GPUs.
After that, we describe the challenges of designing protocols to maintain coherence, and
how fast interconnects currently overcome them.

Overview

Modern multi-processor systems have a hierarchy of caches, in which the first level is
private and the last level is shared [181]. Cache-coherence hides the complexity of this
cache subsystem from programmers. Without cache-coherence, processors might read
stale data from their own cache or from memory if that memory location was updated in
the cache of another processor [181]. Cache-coherence ensures that incoherent accesses
to a single memory location do not occur [181]. At any given time, there can exist either a
single writer, or multiple readers [284]. Thus, cache-coherence enforces a sequential store
order per location. However, cache-coherence does not specify how accesses to different
memory locations relate — this is defined by the memory consistency model [181].

In contrast to CPUs [181], the caches of current GPUs are not coherent [17, 307].
Graphics workloads infrequently synchronize and share data, and adding cache-co-
herence to GPUs would increase design complexity [284]. Instead, programmers must
manually bypass the L1 cache to keep data consistent between threads [384]. However,
new workloads such as data management and tighter integration of the CPU and the
GPU challenge these assumptions.
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Cache-Coherence Design Challenges

Coherent communication between heterogeneous processors with a fast interconnect
requires a different coherence protocol than among homogeneous CPUs. We note five
challenges that hardware designers face:

High Interconnect Latency. The latency of PCI-e is considered too high for fine-
grained cache-coherence [151]. Although fast interconnects reduce latency, in Section 3.2
we show that it remains higher than the latency of CPU interconnects.

GPU-Induced Latency. Including a GPU in the system-wide cache-coherence domain
can introduce additional latency for the CPU, as the CPU must issue coherence requests
to the GPU (e.g., cacheline invalidation) [116]. This can occur even when the CPU
accesses its local CPU memory, if the cacheline was previously accessed by the GPU.
Thus, coherence protocols should avoid penalizing the CPU with additional latency.

High Degree of Parallelism. When executing a program on a GPU, thousands of
memory requests are in flight at any given time [241]. Ensuring cache-coherence for
these memory requests with the standard coherence protocols used by CPUs would
cause bandwidth and storage overhead to issue and track coherence requests [384].

Decouple CPU and GPU Coherence Protocols. Due to the limitations of standard
coherence protocols, new protocols seek to decouple CPUs and GPUs. One approach
is to exclude the non-coherent GPU caches from the system-wide cache-coherence, but
make GPU memory coherently cacheable by the CPU [5, 116]. Alternatively, the GPU
can implement a different, GPU-optimized protocol than the CPU, which are combined
via a coherence interface [11, 312]. In effect, vendors are able to implement their own
coherence protocols and optimize for different processor types [5, 312].

Faulty Coherence Protocol Implementations. Verifying the correctness of coherence
protocols is difficult [366]. An incorrect or malicious implementation could starve the
CPU of memory resources [312]. To ensure system stability, the CPU should be protected
from a misbehaving co-processor [312].

Cache-Coherence Design Solutions

Fast interconnects currently implement cache-coherence by either a selective caching
protocol or a variant of the MESI and MOESI protocols. In the following we outline
these two protocols.

Selective Caching. NVLink 2.0 relies on a two-state invalid/valid (IV) protocol with
selective caching [191]. In the IV protocol, cachelines are either in a valid or an invalid
state [284]. This means that a processor can only own a cacheline exclusively, as no
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shared state exists.
Selective caching on the GPU reduces protocol overhead by filtering coherence requests

using, e.g., a cuckoo filter [5]. The filter probabilistically tracks which cachelines of GPU
memory are owned by the CPU [5]. While a cacheline is captured by the filter, the GPU
must fetch it from the CPU’s cache instead of GPU memory [5]. The filter is periodically
pruned when its fill state exceeds a high water mark [5]. However, as the GPU L1 caches
are software-managed, the CPU does not send invalidation requests to the GPU [191].
Thus, the protocol employs asymmetry in order to reduce complexity for the GPU and
avoid protocol overhead for the CPU [116].

M(O)ESI. More elaborate MESI-based protocols are used by CCIX [91], CXL [109, 110],
OpenCAPI 4.0 [315] and NVLink-C2C [130].

In contrast to IV, MESI has four states: Modified, Exlusive, Shared, and Invalid [284].
MESI has the advantage that multiple processors are able to retain the same cacheline in
a read-only state [284]. On top of MESI, CXL adds an error state to protect the CPUs
against a misbehaving co-processor [109].

In contrast, CCIX and NVLink-C2C use the Arm AMBA CHI protocol [92, 130],
which extends MESI with an Owned state, a partial owned state, and a partial exclusive
state [36]. In contrast to MOESI, the ABMA CHI protocol allows processors to implement
only a part of the state machine and includes additional optimizations [36]. Due to the
Owned state, a cache can directly send a dirty cacheline to another cache without writing
back the cacheline to memory [284]. The two partial states enable writing to a cacheline
without first reading its contents [36]. Snoop filters [282] reduce the coherence requests
sent across the interconnect in the CXL and AMBA CHI protocols [36, 109].

OpenCAPI 4.0 employs a MESI-based protocol with an Exlusiveinvalid state [315],
which serves the same purpose as the partial states of AMBA CHI. We note that
OpenCAPI 3.0 does not implement a cache-coherence protocol, and instead routes all
coherent memory requests issued by the co-processor through the CPU [314].

Challenges Addressed. We find that the high interconnect latency is addressed by
selective caching (NVLink 2.0) and snoop filtering (CXL, AMBA CHI). GPU-induced
latency is entirely avoided by asymmetric coherence protocols (NVLink 2.0, CXL). The
caches of GPUs are natively not coherent, and thus circumvent the challenges inherent to
coherence under massive parallelism at the cost of increased programming complexity
(all current GPUs). This also decouples the CPU coherence protocol from the GPU.
Protocols either guard the CPU against faulty protocol implementations by simplifying
the protocol (NVLink 2.0, AMBA CHI) or introducing explicit error states (CXL).
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Summary

Overall, the coherence protocols of fast interconnects are rapidly evolving. Heterogeneous
processors require different protocol features than CPUs. The current generation of fast
interconnects, i.e., NVLink 2.0, have limitations that may reduce performance when
accessing shared data. We expect that the upcoming coherence protocols, AMBA CHI in
particular, will integrate CPUs and GPUs more tightly.

2.3.7 AtomicMemory Operations

Memory operations that enforce system-wide atomicity are a special case of the GPU
atomic memory operations discussed in Section 2.2.4. In current GPU programming
languages, atomic memory operations are not system-wide atomic by default. Instead,
the programmer must explicitly select a global scope for the atomic operation, e.g.,
atomicAdd_system [24, 304]. Interconnects implement system-wide atomic memory
operations in two ways: cache-coherence protocols and atomic transactions.

Cache-Coherence Protocols. Cache-coherence enables fast interconnects to use the
same method as CPUs [117]. Coherence protocols such as MESI [319] define a Modified
state in which a processor (specifically a CPU core, memory controller, or I/O controller)
retains exclusive, mutable access to a cacheline. By locking the cacheline in this modified
state until the operation is complete, the core enforces atomicity [284]. Thus, to execute
atomics on the same cacheline, processors move the cacheline back-and-forth [117].

Atomic Transactions. In contrast, an atomic transaction ships a modification to a
memory location [91, 326, 327]. In the system, each memory location is associated with
an interconnect controller. By extending the interconnect controller to execute atomic
memory operations, processors are able to send atomics to the respective interconnect
controller instead of running the instruction themselves. Thus, multiple atomic memory
operations can be in flight to the same memory location simultaneously, which eliminates
the interconnect round-trip latency of acquiring a cacheline [138, 326]. Furthermore,
a processor does not have to be part of the cache-coherence domain to issue atomic
memory operations over an interconnect [7]. Active memory operations take this concept
one step further by pushing atomics into the memory controller [138, 188], which is
supported by, e.g., IBM POWER9 CPUs [35]. However, cache-coherence can serve as a
fallback for atomic operations not supported by the receiving processor [191].

Overall, system-wide atomic memory operations are the basis for fine-grained
synchronization in DBMSs. In practice, all currently available fast interconnects support
both coherence-based and transaction-based atomics [35, 91, 109, 191].
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Figure 2.9: Architecture and cache-coherence domains of GPU
interconnects, with their electrical bandwidths annotated.

2.3.8 Summary: NVLink 2.0

Fast interconnects depart from PCI-e in that they integrate GPUs into the system via
address translation, cache-coherence, and system-wide atomic memory operations.
The Nvidia Volta GPUs and IBM POWER9 CPUs that we use in this dissertation
support NVLink 2.0 [84, 190, 191, 297]. Therefore, we summarize our discussion of fast
interconnects with NVLink 2.0 as an example.

In Figure 2.9, we contrast the architectures of PCI-e 3.0 and NVLink 2.0.
Physical Layer. NVLink 2.0 connects up to one CPU and six GPUs in a point-to-point

mesh topology, which has the advantage of higher aggregate bandwidth compared to a
tree. Connections consists of multiple full-duplex links that communicate at 25 GB/s per
direction. A device has up to six links. Of these, up to three links can be bundled for
a total of 75 GB/s. Thus, two GPUs can saturate CPU memory bandwidth, but adding
a third reduces the per-GPU bandwidth by 1⁄3. Like PCI-e, NVLink transmits packets.
However, packet headers incur less overhead for small packets, with a 16 byte header
for up to 256 bytes of payload.

Transfer Primitives. Data transfers from CPU memory can use MMIO and DMA
copy engines. However, in contrast to PCI-e, NVLink gives the GPU direct access to
pageable CPU memory. GPU load, store, and atomic operations are translated into CPU
interconnect commands (i.e., X-bus on POWER9) by the NVLink Processing Unit (NPU).
The NPU is connected by three X-Bus links, each capable of 64 GB/s.

Address Translation. The GPU is integrated into a system-wide address space. If a
TLB miss occurs on a GPU access to CPU memory, the NVLink Processing Unit acts as
an IOMMU and provides the address translation by walking the CPU’s page table. Thus,
in contrast to Unified Virtual Addressing and Unified Memory, address translations do
not require OS intervention.
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Cache-Coherence. Memory accesses are cache-coherent on 128-byte cache-line
boundaries. The CPU can thus cache GPU memory in its cache hierarchy, and the
GPU can cache CPU memory in its L1 caches. Cache-coherence guarantees that writes
performed by one processor are visible by any other processor. The observable order of
memory operations depends on the memory consistency model. Intel CPUs guarantee
that aligned reads and writes are atomic, and that writes are (nearly) sequentially
consistent [193, vol.3A, §8.2]. In contrast, IBM CPUs and Nvidia GPUs have weaker
memory consistency models [258].

Summary. Overall, NVLink 2.0 presents an opportunity to explore the new design
space offered by fast interconnects for DBMSs. We discuss these opportunities and
challenges in Section 3.2. Furthermore, we investigate the translation architecture of
NVLink 2.0, its TLB miss latency and random-access bandwidth in detail in Section 4.2.4.

2.4 GPU-enabled DatabaseManagement Systems

In this section, we give an overview of GPU-enabled DBMSs (Section 2.4.1) and the
DBMS operators that we focus on in this thesis (Section 2.4.2).

2.4.1 DBMS Design

Throughout this dissertation, we assume a generalized model of how DBMSs integrate
GPUs, which we present in Figure 2.10. Our model extracts the relevant design features
of state-of-the-art GPU-enabled DBMSs that manage data out-of-core [78, 102, 146, 244,
274, 349]. Out-of-core data reside outside of the GPU, and the GPU accesses these data
over an interconnect. Our work focuses on data stored in CPU memory.

We refer the interested reader to the recent survey conducted by Rosenfeld et al. [356]
for an in-depth discussion of GPU-enabled DBMS designs.

GPU Use Cases. In principle, various tasks performed by a DBMS can be offloaded to
a GPU, e.g., query execution [158], query optimization [175], transaction processing [72,
172], stream processing [231], and data loading [235]. However, OLAP and machine
learning queries are the most established use-cases for GPUs in DBMSs [350, 356].

OLAP and ML. Online analytical processing (OLAP) and machine learning queries
are formulated ad hoc by the user to explore a data set [71, 94]. They are complex, i.e.,
consisting of scans, joins, and aggregations in the case of OLAP, and additionally linear
algebra operators and iterative control flow in the case of machine learning. Although
these workloads are read-heavy, the queries work on the entire data set. As a human is
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Figure 2.10: Design of a GPU-enabled DBMS.

in the loop, response times should be short. Thus, the goal of GPU-enabled DBMSs is to
achieve the high data rates necessary to query large data volumes in a timely fashion.

DBMS Design. From a design perspective, GPU-enabled DBMSs are column-
oriented, in-memory DBMSs [77, 170, 176, 424]. This DBMS design stores data in CPU
memory and is optimized for analytical query processing [73, 220]. Storing large data sets
in CPU memory is possible because modern servers have terabytes of memory capacity
(i.e., DRAM — dynamic random access memory) [23, 200, 393], and recent non-volatile
memory technologies such as Intel Optane are capable of increasing the capacity by an
order-of-magnitude [33, 375]. Column-oriented in-memory DBMSs increase the data
access performance relative to row-oriented data layouts [77, 170].

Query Execution. Within the DBMS, GPUs extend the query execution engine [78,
102, 146, 244, 274, 349]. The DBMS gains a runtime with operators specialized for GPU
execution. During execution, the DBMS transfers the data from CPU memory to the GPU
ad hoc and executes the query [78, 102, 146, 244, 274, 349]. The other DBMS components
required to execute a query, e.g., SQL parsing and query planning and optimization, are
retained on the CPU [77, 103, 176].

Single Data Pass. Different execution paradigms exist to construct query execution
engines. Some engines generate code just-in-time to emit operator pipelines [79, 102,
146, 322], others vectorize [274] or tile [323, 374] the execution, and operator-at-a-time
execution is yet another variant [77, 176, 244]. The processing paradigm is immaterial
to our thesis, but we must consider that only operator pipelines and vectorized/tiled
engines are capable of processing queries in a single data pass [146, 374], which avoids
transferring data items over the interconnect multiple times.

Summary. Overall, modern GPU-enabled DBMSs achieve a high query execution
performance. Advances in the query execution paradigms continue to increase execu-
tion efficiency. Furthermore, the computational performance of GPUs is also rapidly
increasing with each GPU generation [397, 398]. Thus, in order to sustain their query
performance, GPU DBMSs require fast access to data.
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2.4.2 DBMS Operators

We present the state-of-the-art knowledge for executing DBMS operators on GPUs.
We cover the no-partitioning hash join and partitioned hash join operators, as well as
k-means and its two-phase execution pattern.

No-Partitioning Hash Join

In Chapter 3, we investigate the no-partitioning hash join algorithm as proposed by
Blanas et al. [63]. The no-partitioning hash join algorithm is a parallel version of the
canonical hash join [48]. We focus on this algorithm because it is simple and well-
understood. Loading base relations from CPU memory requires high bandwidth, scaling
the hash table beyond GPU memory requires low latency, and sharing the hash table
between multiple processors requires cache-coherence. Thus, the no-partitioning hash
join is a useful instrument to investigate fast GPU interconnects.

The anatomy of a no-partitioning hash join consists of two phases, the build and the
probe phase. The build phase takes as input the smaller of the two join relations, which
we denote as the inner relation 𝑅. In the build phase, we populate the hash table with all
tuples in R. After the build phase is complete, we run the probe phase. The probe phase
reads the second, larger input relation as input. We name this relation the outer relation
𝑆 . For each tuple in S, we probe the hash table to find matching tuples from R. When
executing the hash join in parallel on a system with 𝑝 cores, its time complexity observes
𝑂 (1/𝑝( |𝑅 | + |𝑆 |)).

Partitioned Hash Join

We extend the parallel radix-partitioned hash join algorithm as introduced by Kim et
al. [226] in Chapter 4. The core idea of partitioned join algorithms is to increase data
locality, such that we are able to store the hash table in the processor cache [378]. The
low access latency of the cache improves the performance of random accesses to the
hash table. This technique also applies to other hash-based relational operators, such as
group-based aggregations [124, 378, 423] and duplicate elimination [124]. In contrast to
other partitioning methods, radix partitioning has the advantage that it helps to reduce
TLB misses [267].

Radix-partitioned hash joins have two constraints. First, the hash tables must fit into
the cache. As the cache has a constant size, larger data volumes require a higher fanout
(i.e., number of partitions) to keep the size of each partition constant. Second, a high
fanout incurs frequent TLB misses if the fanout is higher than the number of available
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TLB entries. TLB misses are expensive, because resolving a miss involves between 1–6
memory accesses [51].

For large data sets, there exists a fundamental tension between these two constraints.
On the one hand, a high fanout is necessary to efficiently look up hash table entries.
On the other hand, a high fanout increases the cost of partitioning. In the following,
we describe how database literature addresses this trade-off by optimizing high-fanout
partitioning on CPUs and GPUs.

On CPUs, we reduce TLB misses through software write-combining (SWWC) [364].
SWWC reduces TLB misses by intermediately buffering tuples in the processor cache.
Tuples are then written to their final positions in batches. Thus, a batch size of 𝑁 reduces
the amount of TLB misses by a factor of 𝑁 [367]. Flushing buffers can be optimized with
non-temporal stores, that avoid polluting the cache [410]. Finally, storing partition offsets
in a micro-row layout reduces cache misses and requires less cache space [46, 368].

Optimization techniques for GPUs differ from those for CPUs. Scattered writes can
be coalesced by partially sorting tuples in scratchpad memory [363]. A thread block
works together to sort tuples and flush them to memory. In contrast to SWWC on
CPUs, all tuples are flushed at the same time. If the batch size is larger than the fanout,
it follows that each memory transaction must write out multiple tuples per partition.
However, although writes introduce coalescing opportunities, misalignment can still
prevent coalescing, thereby reducing efficiency.

On recent GPUs that support efficient atomic additions [207], partitioning can
be improved by replacing prefix scan with a linear allocator for a single data pass
within the scratchpad [361, 395]. A linear allocator tracks free array slots using an
atomically incrementing counter. We refer to this approach as the linear allocator software
write-combining (Linear) partitioning algorithm.

k-Means

k-Means [256, 263] represents an iterative algorithm for cluster analysis in machine
learning applications, which we analyze in Chapter 5. It partitions 𝑁 observations into 𝑘

clusters such that each observation belongs to the cluster with the nearest mean. The
input to k-means is a set of points in an R𝑑 space spanned by 𝑑 features, and a parameter 𝑘
that specifies the number of clusters. k-Means produces a centroid per cluster and a label
per point as output. A centroid defines the mean of the points forming a cluster, while a
label identifies the cluster to which a point belongs.

The actual processing of k-means is performed in two phases [39]. First, during
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the point assignment phase, a point is assigned to the cluster of its nearest centroid. The
nearest centroid is determined by the Euclidean distance. Second, during the centroid
update phase, the means are recalculated for each cluster. Both phases together form one
k-means iteration that is repeated either until the mean squared error of the old and new
centroids converges below an 𝜖 or a defined iteration limit is exceeded.

The time complexity of k-means is 𝑂 (𝑁𝑑𝑘) per iteration, i.e., the number of data
points 𝑁 multiplied by the features per point 𝑑 and the clusters 𝑘 . However, as the values
of 𝑑 and 𝑘 are predetermined, the runtime of an iteration is linear in regard to the data
size [39, 233, 317]. Thus, k-means is well-suited for processing large data sets.

Summary

In summary, the two hash join algorithms and k-means cover a spectrum of DBMS design
challenges: data intensity, large state, and iterations. Focusing on well-understood
operators gives us the freedom to explore these design challenges on a new hardware
platform while effectively communicating our insights.
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3
Scalable Data-intensive Query Processing

In this chapter, we investigate the scalability limitations of GPU co-processing and analyze
how a faster interconnect helps us to overcome them by providing high bandwidth
and low latency. In Figure 3.1, we show that fast interconnects enable the GPU to
access CPU memory with the full memory bandwidth. Furthermore, we propose a
new co-processing strategy that takes advantage of the cache-coherence provided by
fast interconnects for fine-grained CPU-GPU cooperation. Overall, fast interconnects
integrate GPUs tightly with CPUs and significantly reduce the data transfer bottleneck.
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Figure 3.1: NVLink 2.0 eliminates the GPU’s main-memory
access disadvantage compared to the CPU.
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3.1 Introduction

The data transfer bottleneck is responsible for the limited scalability of GPU-enabled
DBMSs [45, 146, 161, 274, 349, 374, 424]. This bottleneck exists because current GPU
interconnects such as PCI-e 3.0 [7] and PCI-e 4.0 [326] provide significantly lower
bandwidth than CPU memory. We break down the transfer bottleneck into three
fundamental limitations for GPU-enabled data processing:

L1: Low interconnect bandwidth. When the DBMS decides to use the GPU for query
processing, it must transfer data ad hoc from CPU memory to the GPU. With current
interconnects, this transfer is slower than processing the data on the CPU [78, 161, 170].
Consequently, we can only speed up data processing on GPUs by increasing the
interconnect bandwidth [102, 146, 219, 385, 413]. Although data compression [136, 359]
and approximation [340] can reduce transfer volume, their effectiveness varies with the
data and query.

L2: Small GPU memory capacity. To avoid transferring data, GPU-enabled DBMSs
cache data in GPU memory [78, 176, 218, 355]. However, GPUs have limited on-board
GPU memory capacity (up to 32 GiB). In general, large data sets cannot be stored in GPU
memory. The capacity limitation is intensified by DBMS operators that need additional
space for intermediate state, e.g., hash tables or sorted arrays. In sum, GPU co-processing
does not scale to large data volumes.

L3: Coarse-grained cooperation of CPU and GPU. Using only a single processor for
query execution leaves available resources unused [102]. However, co-processing on
multiple, heterogeneous processors inherently leads to execution skew [129, 163], and
can even cause slower execution than on a single processor [78]. Thus, CPU and GPU
must cooperate to ensure that the CPU’s execution time is the lower bound. Cooperation
requires efficient synchronization between processors on shared data structures such as
hash tables or B-trees, that is not possible with current interconnects [32].

We structure our investigation based on these limitations. Our contributions are as
follows:

1. We analyze NVLink 2.0 to understand its performance and new functionality in
the context of data management (Section 3.2). NVLink 2.0 is one representative of
the new generation of fast interconnects.

2. We investigate how fast interconnects allow us to perform efficient ad hoc data
transfers (L1). We experimentally determine the best transfer strategy (Section 3.3).

3. We scale queries to large data volumes while considering the new trade-offs of fast
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interconnects (L2). We use a no-partitioning hash join as an example (Section 3.4).

4. We propose a new cooperative and robust co-processing approach that enables
CPU-GPU scale-up on a shared, mutable data structure (L3, Section 3.5).

5. We evaluate joins as well as a selection-aggregation query using a fast interconnect
(Section 3.6).

The remainder of this chapter is organized as follows. In Sections 3–6 we present our
contributions. Then, we present our experimental results in Section 3.6 and discuss our
insights in Section 3.7. Finally, we review related work in Section 3.8 and conclude the
chapter in Section 3.9.

3.2 Analysis of a Fast Interconnect

In this section, we analyze the class of fast interconnects by example of NVLink 2.0 to
understand their performance and new functionality in the context of data management.
The main improvements of fast interconnects compared to PCI-e 3.0 are higher bandwidth,
lower latency, and cache-coherence. We investigate these properties and examine the
benefits and challenges for scaling co-processing.

Bandwidth & Latency. We start by quantifying how much NVLink 2.0 improves
the GPU’s interconnect performance. We compare NVLink 2.0’s ➁ performance to
GPU (PCI-e 3.0 ➀) and CPU interconnects (Intel Xeon Ultra Path Interconnect (UPI)
➂, IBM POWER9 X-Bus ➃), CPU memory (Intel Xeon ➄, IBM POWER9 ➅), and GPU
memory (Nvidia V100 ➆). We visualize these data access paths in Figure 3.3. In all our
measurements we show 4-byte read accesses on 1 GiB of data. We defer giving further
details on our measurement setup and methodology to Section 3.6.1.

We first compare NVLink 2.0 to the other GPU and CPU interconnects in Figure 3.2(a).
Our measurements show that NVLink 2.0 has 5.5× more sequential bandwidth than
PCI-e 3.0, and twice as much as UPI and X-Bus. Random accesses patterns are 16× faster
than PCI-e 3.0, and 38% faster than UPI. However, while the latency of NVLink 2.0 is
45% lower than PCI-e 3.0, it is 3.8× higher than UPI and 2× higher than X-Bus. Overall,
NVLink 2.0 is significantly faster than PCI-e 3.0, and more bandwidth-oriented than the
CPU interconnects.

Next, we show the NVLink 2.0 vs. CPU memory in Figure 3.2(b). We note that the
IBM CPU has 8 DDR4-2666 memory channels, while the Intel Xeon only has 6 channels
of the same memory type. We see that for sequential accesses, the Intel Xeon and IBM
POWER9 have 38% and 2× higher bandwidth than NVLink 2.0, respectively. For random
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Figure 3.2: Bandwidth and latency of memory reads on IBM
and Intel systems with Nvidia GPUs. Compare to data access
paths shown in Figure 3.3.
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(a) 2× IBM POWER9 with
2× Nvidia V100-SXM2.

(b) 2× Intel Xeon with 1× Nvidia
V100-PCIE.

Figure 3.3: Data access paths on IBM and Intel systems.

accesses, NVLink 2.0 is 16% slower than the Intel Xeon and 22% slower than the IBM
POWER9. The latency of NVLink 2.0 is 6–7× higher than the latency of CPU memory.
We take away that, although NVLink 2.0 puts the GPU within a factor of two of the
CPUs’ bandwidth, it adds significant latency.

Finally, in Figure 3.2(c), we compare GPU accesses to CPU memory over NVLink 2.0
with GPU memory. We observe that both access patterns have an order-of-magnitude
higher bandwidth in GPU memory, but that latency over NVLink 2.0 is only 54% higher.
As GPUs are designed to handle such high-latency memory accesses [183, 408], they are
well-equipped to cope with the additional latency of NVLink 2.0.

Cache-coherence. Cache-coherence simplifies the practical use of NVLink 2.0 for
data processing. The advantages are three-fold. First, the GPU can directly access any
location in CPU memory, therefore pinning memory becomes unnecessary. Second,
allocating pageable memory is faster than allocating pinned memory [142, 278, 403].
Third, the operating system and database are able to perform background tasks that
are important for long-running processes, such as memory defragmentation [107] and
optimizing NUMA locality through page migration [251].

In contrast, the non-cache-coherence of PCI-e has two main drawbacks. First, data
consistency must be managed in software instead of in hardware. The programmer either
manually flushes the caches [304], or the OS migrates pages [296]. Second, system-wide
atomics are unsupported. Instead, a work-around is provided by first migrating Unified
Memory pages to GPU memory, and then performing the atomic operation in GPU
memory [300].

Research shows that adding fine-grained cache-coherence to PCI-e is not feasible due
to its high latency [151]. However, NVLink 2.0 removes these limitations [191] and thus
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is better-suited for data processing.
Benefits. We demonstrate three benefits of NVLink 2.0 for data processing with a

no-partitioning hash join. First, we are able to scale the probe-side relation to arbitrary
data volumes due to NVLink 2.0’s high sequential bandwidth. With the hash table stored
in GPU memory, we retain the GPU’s performance advantage compared to a CPU join.
Second, we provide build-side scalability to arbitrary data volumes using NVLink 2.0’s
low latency and high random access bandwidth. Thus, we are able to spill the hash table
from GPU to CPU memory. Third, we employ the cache-coherence and system-wide
atomics of NVLink 2.0 to share the hash table between a CPU and a GPU and scale-up
data processing.

Challenges. Despite the benefits of NVLink 2.0 for data processing, translating
high interconnect performance into high-performance query processing will require
addressing the following challenges.

First, an out-of-core GPU join operator must perform both data access and computa-
tion efficiently. Early GPU join approaches cannot saturate the interconnect [170, 171].
More recent algorithms saturate the interconnect, and are optimized to access data over
a low-bandwidth interconnect [213, 385]. This can involve additional partitioning steps
on the CPU [385]. We investigate how a GPU join operator can take full advantage of
the higher interconnect performance.

Second, scaling the build-side volume beyond the capacity of GPU memory in a NP-
HJ requires spilling the hash table to CPU memory. However, spilling to CPU memory
implies that the GPU performs irregular accesses to CPU memory, as, by design, hash
functions map keys to uniformly distributed memory locations. Such irregular accesses
are inefficient over high-latency interconnects. For this reason, previous approaches
either cannot scale beyond GPU memory [170, 213], or are restricted to partitioning-based
joins [385]. Higher interconnect performance requires us to reconsider how well a NP-HJ
that spills to CPU memory performs on GPUs.

Third, fully exploiting a heterogeneous system consisting of CPUs and GPUs re-
quires them to cooperatively process the join. We must take into account data locality,
synchronization costs, and the differences in hardware architectures to achieve efficiency.

3.3 Efficient Data Transfer between CPU and GPU

In order to process data, the GPU needs to read input data from CPU memory. Since the
GPU memory is limited to tens of gigabytes, we cannot store a large amount of data on
the GPU. As a consequence, any involvement of the GPU in data processing requires ad
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Figure 3.4: Push- vs. pull-based data transfer methods.

Table 3.1: An overview of GPU transfer methods.

Method Semantics Level Granularity Memory
Pageable Copy

Push SW Chunk
PageableStaged Copy

Dynamic Pinning
Pinned Copy Pinned
UM Prefetch Unified
UM Migration

Pull
OS Page Unified

Zero-Copy HW Byte Pinned
Coherence Pageable

hoc data transfer, which makes interconnect bandwidth the most critical resource (L1).
We can choose between different strategies to initiate data transfers between CPU

and GPU. Each strategy shows different performance on the same interconnect. In this
section, we discuss these data transfer strategies to identify the most efficient way for
data transfer. We build on these insights in the following sections.

Recent versions of CUDA provide a rich set of APIs that abstract the MMIO and
DMA transfer primitives described in Section 2.3.1. From these APIs, we derive eight
transfer methods that we list in Table 3.1. We divide these methods into two categories
based on their semantics, push-based and pull-based. On a high level, push-based methods
perform course-grained transfers to GPU memory, whereas in pull-based methods the
GPU directly accesses CPU memory. We depict these differences in Figure 3.4. We first
describe push-based methods, and then pull-based methods.

3.3.1 Push-based TransferMethods

In order to transfer data, push-based methods rely on a pipeline to hide transfer latency.
The pipeline is implemented in software and executed by the CPU. We describe the
pipeline stages of each method and contrast their differences.

Pageable Copy. Pageable Copy is the most basic method to copy data to the GPU.
It is exposed in the API via the cudaMemcpyAsync function, and transfers data directly
from any location in pageable memory. As the API is called on the CPU, data are pushed
to the GPU. Before we setup the pipeline, we split the data into chunks. Subsequently,
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we setup a two-stage pipeline by first transferring each chunk to the GPU, and then
processing the chunk on the GPU. As both steps can be performed in parallel, the
computation overlaps with the transfer.

Pinned Copy. As Nvidia recommends using pinned memory instead of pageable
memory for data transfer [303], we apply the same technique as in Pageable Copy to
pinned memory. Thus, the hardware can perform DMA using the copy engines instead
of using a CPU thread to copy via memory-mapped I/O. Therefore, Pinned Copy is
typically faster than Pageable Copy, but requires the database to store all data that is
accessed by the GPU in pinned memory.

Staged Copy. However, storing all data in pinned memory violates Nvidia’s
recommendation to consider pinned memory as a scarce resource [303], and pinning
large amounts of memory complicates memory management. Therefore, we setup a
pinned staging buffer for the copy. In the pipeline, we first copy a chunk of data from
pageable memory into the pinned memory buffer. Then, we perform the transfer and
compute stages. We thus pipeline the transfer at the expense of an additional copy
operation within CPU memory.

Dynamic Pinning. CUDA supports pinning pages of preexisting pageable memory.
This allows us to pin pages ad hoc before we transfer data to the GPU, avoiding an
additional copy operation in CPU memory. After that, we execute the copy and compute
stages.

Unified Memory Prefetch. If we use Unified Memory and know the data access
pattern beforehand, we can explicitly prefetch a region of unified memory to the GPU
before the access takes place. This avoids a drawback of the Unified Memory Migration
method that we describe next, namely that migrating pages on-demand has high latency
and stalls the GPU [432]. We execute the transfer in a two-stage pipeline that consists
of prefetching a chunk of data to the GPU, and then running the computation. Thus,
prefetching requires a software pipeline in addition to using Unified Memory.

3.3.2 Pull-based TransferMethods

Many database operators access memory irregularly, especially operators based on
hashing. Hashed accesses are irregular, because hash functions are designed to generate
uniform and randomly distributed output. These accesses are also data-dependent, as
the hash function’s input are attributes of a relation (e.g., the primary key).

Push-based transfer methods cannot handle these types of memory access. The CPU
decides which data are transferred to the GPU. Thus, the GPU has no control over which
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data it processes, and cannot satisfy data-dependencies.
In contrast, pull-based methods are able to handle data-dependencies, as they

intrinsically request data. In the following, we introduce three pull-based transfer
methods.

Unified Memory Migration. Instead of dealing with pageable and pinned memory
inside the database, Unified Memory allows us to delegate data transfer to the operating
system. Internally, memory pages are migrated to the GPU on a page access [432] (4 KiB
on Intel CPUs, 64 KiB on IBM CPUs [286]). Therefore, the GPU pulls data, and pipelining
in software is unnecessary. However, the database must explicitly allocate Unified
Memory to store data.

Zero-Copy. The previous approaches involve software or the operating system to
manage transferring data. In contrast, we can use Unified Virtual Addressing to directly
access data in CPU memory during GPU execution. We are able to load data with
byte-wise granularity, but are restricted to accessing pinned memory. As Zero-Copy is
managed entirely in hardware, software or operating system are not involved.

Coherence. NVLink 2.0 offers a new transfer method that is unavailable with previous
interconnects. Using the hardware address translation services and cache-coherence,
the GPU can directly access any CPU memory during execution. In contrast to Unified
Memory Migration, NVLink 2.0 accesses memory with byte-wise granularity. In contrast
to Unified Virtual Addressing, NVLink 2.0 does not require pinned memory. Instead, the
GPU is able to directly access pageable CPU memory. Thus, NVLink 2.0 lifts previous
constraints on the memory type and access granularity.

3.4 Scaling GPU Hash Joins to Arbitrary Data Sizes

Current algorithms and systems for data processing on GPUs are all limited to some
degree by the capacity of GPU memory (L2). Being limited by GPU memory capacity is
the most fundamental problem in adopting GPU acceleration for data management in
practice. In this section, we study how fast interconnects enable us to efficiently scale up
data processing to arbitrary database sizes.

We study the impact of fast interconnects on the example of a no-partitioning hash
join because of its unique requirements: (1) The build phase performs random memory
accesses and thus requires either a low-latency interconnect to access the hash table in
CPU memory, or enough GPU memory to store the hash table. The latter is a common
scalability constraint. (2) The probe phase puts high demands on the interconnect’s
bandwidth. We discuss how we can scale up the probe side (Section 3.4.1) and the build
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(a) Data and hash table in GPU
memory.

(b) Data in CPU memory and
hash table in GPU memory.

Figure 3.5: Scaling the probe side to any data size.

side (Section 3.4.2), respectively, and propose our hybrid hash table approach to improve
performance (Section 3.4.3).

3.4.1 Scaling the Probe Side to Any Data Size

Transferring the inner and outer relations on-the-fly allows us to scale the relations’
cardinalities regardless of GPU memory capacity. We begin by describing a simple,
baseline join [158, 422] that is non-scalable. After that, we remove the probe-side cardinality
limit by comparing the baseline to the Zero-Copy pull-based join introduced by Kaldewey
et al. [213]. Based on the Zero-Copy join, we contribute our Coherence join that uses the
Coherence transfer method. To simplify the discussion, we focus on pull-based methods.
However, at the cost of additional complexity, we could instead use push-based pipelines
to achieve probe-side scalability [170, 171].

First, in the baseline approach that we show in Figure 3.5a, we first copy the entire
build-side relation 𝑅 to GPU memory. When the copy is complete, we build the hash
table in GPU memory. Following that, we evict 𝑅 and copy the probe-side relation 𝑆 to
GPU memory. We probe the hash table and emit the join result (i.e., an aggregate or a
materialization). The benefit of this approach is that it only requires the hardware to
support synchronous copying. However, this baseline doesn’t scale to arbitrary data
sizes, as it is limited by the GPU’s memory capacity.

Next, in Figure 3.5b, we illustrate our probe-side scalable join. By using a pull-based
transfer method, we are able to remove the scalability limitation. Zero-Copy and
Coherence enable us to access CPU memory directly from the GPU (i.e., by dereferencing
a pointer). Therefore, we build the hash table on the GPU by pulling R tuples on-demand
from CPU memory. Behind the scenes, the hardware manages the data transfer. After
we finish building the hash table, we pull S tuples on-demand and probe the hash table.

Finally, we replace the Zero-Copy transfer method with the Coherence transfer
method in the Zero-Copy join. The Zero-Copy method requires the base relations to be

44



Chapter 3. Scalable Data-intensive Query Processing

(a) Data and hash table in CPU
memory.

(b) Data in CPU memory and
hash table spills from GPU mem-
ory into CPU memory.

Figure 3.6: Scaling the build side to any data size.

stored in pinned memory. However, databases typically store data in pageable memory.
We enable the GPU to access any memory location in pageable memory by replacing
Zero-Copy with Coherence, which simplifies GPU data processing.

3.4.2 Scaling the Build Side to Any Data Size

We assume that the hash table is small enough to fit into GPU memory in Section 3.4.1.
This limits the cardinality of 𝑅. We now lift this limitation and consider large hash tables.

We show our build-side scalable join in Figure 3.6a. The join is based on our
probe-side scalable join, that we introduce in Section 3.4.1. However, in contrast to our
probe-side scalable join, we store the hash table in CPU memory. By storing the hash
table in CPU memory instead of in GPU memory, we are no longer constrained by the
GPU’s memory capacity.

In contrast to reading in base relations, hash table operations (insert and lookup)
are data-dependent and have an irregular memory access pattern. Pull-based transfer
methods (e.g., Coherence) enable us to perform these operations on the GPU in CPU
memory. As we typically allocate memory specifically to build the hash table, we can
allocate pinned memory or Unified Memory for use with the Zero-Copy or Unified
Memory Migration methods. This flexibility allows us to choose the optimal transfer
method for our hardware.

3.4.3 Optimizing the Hash Table Placement

Although the Coherence transfer method enables the GPU to access any CPU memory
location, access performance is non-uniform and varies with memory locality. CPU
memory is an order-of-magnitude slower than GPU memory for random accesses (see
Section 3.2). We combine the advantages of both memory types in our new hybrid hash
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Figure 3.7: Allocating the hybrid hash table.

table. We design the hybrid hash table such that access performance degrades gracefully
when the hash table’s size is increased.

In Figure 3.6b, we show that our hybrid hash table can replace a hash table in CPU
memory without any modifications to the join algorithm. This is possible because the
hybrid hash table uses virtual memory to abstract the physical location of memory pages.
We use virtual memory to combine GPU pages and CPU pages into a single, contiguous
array. Virtual memory has been available previously on GPUs [217]. However, fast
interconnects integrate the GPU into a system-wide address space, which enables us to
map physical CPU pages next to GPU pages in the address space.

We allocate the hybrid hash table using a greedy algorithm, that we depict in
Figure 3.7. By default, ➀ we allocate GPU memory. If the hash table is small enough, we
allocate the entire hash table in GPU memory. Otherwise, ➁ if not enough GPU memory
is available, we allocate memory on the CPU that is nearest to the GPU. Therefore, we
spill the hash table to CPU memory. If that CPU has insufficient memory, we recursively
search the next-nearest CPUs of a multi-socket NUMA system until we have allocated
sufficient memory for the hash table. Overall, we allocate part of the hash table in GPU
memory, and part in CPU memory.

The hybrid hash table is optimized for handling the worst case of a uniform join
key distribution. We model this case as follows. We assume that the hash table
consists of 𝐺𝑚𝑒𝑚 and 𝐶𝑚𝑒𝑚 bytes of GPU and CPU memory. We then expect that
𝐴𝐺𝑃𝑈 =

𝐺𝑚𝑒𝑚

𝐺𝑚𝑒𝑚+𝐶𝑚𝑒𝑚
of all accesses are to GPU memory. We estimate hash join throughput

to be 𝐽𝑡𝑝𝑢𝑡 = 𝐴𝐺𝑃𝑈𝐺𝑡𝑝𝑢𝑡 + (1 − 𝐴𝐺𝑃𝑈 )𝐶𝑡𝑝𝑢𝑡 , where 𝐺𝑡𝑝𝑢𝑡 and 𝐶𝑡𝑝𝑢𝑡 are the hash join
throughputs when the hash table resides in GPU and CPU memory, respectively. Overall,
throughput is determined by the proportion of accesses to a given processor.

There are two additional benefits to our hybrid hash table that cannot be replicated
without hardware support. First, the contiguous array underlying the hybrid hash
table comes at zero additional cost, because processors perform virtual-to-physical
address translation regardless of memory location. We could simulate a hybrid hash
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(a) Cooperatively process join on
CPU and GPU with hash table
in CPU memory.

(b) Build hash table on GPU,
copy the hash table to processor-
local memories, and then cooper-
atively probe on CPU and GPU.

Figure 3.8: Scaling-up using CPU and GPU.

table on hardware without a system-wide address space by mapping together two
non-contiguous arrays in software. However, the software indirection would add extra
cycles on each access. Second, besides a change to the allocation logic, we leave the hash
join algorithm unmodified. Thus, our hybrid hash table can easily be integrated into
existing databases.

3.5 Scaling-up using CPU and GPU

The third fundamental limitation (L3) of GPU co-processing is single processor execution.
Without a way that enables CPUs and GPUs to collaborate in query processing, we leave
available processing resources unused and cannot take full advantage of a heterogeneous
CPU+GPU system.

In this section, our goal is to increase throughput by utilizing all available processors
cooperatively, i.e., combining CPUs and GPUs. The main challenge is to guarantee that
performance always improves when we schedule work on a GPU, even for the first query
that is executed on the GPU. For this, the scheduling approach must be highly robust
with respect to execution skew. As a consequence, truly scalable co-processing has the
following three requirements. (a) We must process chunks of input data such that we
can exploit data parallelism to use CPU and GPU for the same query. (b) At the same
time, the task scheduling approach needs to avoid load imbalances. (c) The approach
must avoid resource contention (e.g., of memory bandwidth) to prevent slowing down
the overall execution time.

We first propose a heterogeneous task scheduling scheme. Following that, we
optimize our hash table placement strategy for co-processing. Finally, we describe
scaling up on multiple GPUs that are connected with a fast interconnect.
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Figure 3.9: Dynamically scheduling tasks to CPU and GPU
processors.

3.5.1 Task Scheduling

Load imbalances inherently occur on heterogeneous architectures due to the relative
throughput differences of processors. As the throughput of a processor depends on many
variable parameters that change over time (e.g., query, data, processor clock speeds), we
cannot know the relative differences upfront. A task scheduler ensures that all processors
deliver their highest possible throughput.

We adapt the CPU-oriented, morsel-driven approach [63, 247] for GPUs. In the
CPU-oriented approach, all cores work concurrently on the same data and, in the case of
joins, the same hash table. Cores balance load by requesting fixed-sized chunks of data
(i.e., morsels) from a central dispatcher, that is implemented as a read cursor. Each core
advances at its own processing rate.

In Figure 3.9, we show our heterogeneous scheduling approach. In contrast to the
CPU-oriented approach, we give each processor the right amount of work to minimize
execution skew by considering the increased latency of scheduling work on a GPU, and
the higher processing rate of the GPU. Instead of dispatching one morsel at-a-time, we
dispatch batches of morsels to the GPU concurrently. Batching morsels amortizes the
latency of launching a GPU kernel over more data. Concurrently scheduling batches on
two separate work queues hides scheduling latency and ensures that the GPU is always
occupied. We empirically tune the batch size to our hardware.

3.5.2 Heterogeneous Hash Table Placement

Processors are fastest when accessing their local memories. Consequently, our hybrid
hash table (Section 3.7) prefers data in GPU memory, and spills to CPU memory only
when necessary. In our hybrid hash table, however, we consider only a single processor.
In this section, we optimize for multiple, heterogeneous processors accessing the hash
table via a fast interconnect. We consider two cases: one globally shared hash table, and

48



Chapter 3. Scalable Data-intensive Query Processing

Figure 3.10: Hash table placement decision.

multiple per-processor hash tables. We summarize the placement decision process in
Figure 3.10.

In Figure 3.8a, we show the CPU and GPU processing a join using a globally shared
hash table (Het strategy). Globally sharing a hash table retains the build-side scaling
behavior that we achieve in Section 3.4.2. However, we avoid our hybrid hash table
optimization and store the hash table in CPU memory. We choose this design because
we aim to always speed up processing when using a co-processor. Therefore, we avoid
slowing down CPU processing through remote GPU memory accesses. In addition,
the CPU has significantly lower performance when accessing GPU memory than the
GPU accessing CPU memory, due to the CPU coping worse than the GPU with the high
latencies of GPU memory and the interconnect [191].

We handle the special case of small build-side relations separately (GPU + Het
strategy), because processors face contention when building the hash table. Furthermore,
small hash tables allow us to optimize hash table locality. We show our small table
optimization in Figure 3.8b. In a first step, ➀ one processor (e.g., the GPU) builds the hash
table in processor-local memory (in this case, GPU memory). Following that, ➁ we copy
the finished hash table to all other processors. By storing a local copy of the hash table
on each processor, we ensure that all processors have high random-access bandwidth
to the hash table. Finally, ➂ we execute the probe phase on all processors using our
heterogeneous scheduling strategy. Our strategy could be extended to multi-way joins
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Table 3.2: Workload Overview.

Property A (from [63]) B C (from [226])
key / payload 8 / 8 bytes 8 / 8 bytes 4 / 4 bytes
cardinality of 𝑅 227 tuples 218 tuples 1024 · 106 tuples
cardinality of 𝑆 231 tuples 231 tuples 1024 · 106 tuples
total size of 𝑅 2 GiB 4 MiB 7.6 GiB
total size of 𝑆 32 GiB 32 GiB 7.6 GiB

(e.g., for a star schema) by building hash tables on a different processor in parallel, and
then copying all hash tables to all processors. However, we focus on investigating fast
interconnects using a single join.

3.5.3 Multi-GPU Hash Table Placement

Systems with multiple GPUs are connected in a mesh topology similar to multi-socket
CPU systems. For small hash tables, we can use the GPU+Het execution strategy with
multiple GPUs. However, for large hash tables, multi-GPU systems can distribute the
hash table over multiple GPUs, as GPUs are latency insensitive [183, 408]. We distribute
the table by interleaving the pages over all GPUs. This strategy is used in NUMA
systems [247]. Fast interconnects enable us to use the strategy in multi-GPU systems.

In contrast to CPU+GPU execution, distributing computation over multiple GPUs
provides three distinct advantages. First, using only GPUs avoids computational
skew. Second, distributing large hash tables within GPU memory frees CPU memory
bandwidth for loading the base relations. Finally, interleaving the hash table over
multiple GPUs utilizes the full bi-directional bandwidth of fast interconnects, as opposed
to the mostly uni-directional traffic of the Het strategy.

3.6 Evaluation

In this section, we evaluate the impact of NVLink 2.0 on data processing. We describe
our setup in Section 3.6.1. After that, we present our results in Section 3.6.2.

3.6.1 Setup and Configuration

We first introduce our methodology and experimental setup. Then, we describe the data
sets that we use in our evaluation. Finally, we introduce our experiments.

Environment. We evaluate our experiments on one GPU and two CPU architectures.
We conduct our GPU measurements using an Nvidia Tesla V100-SXM2 and a V100-PCIE
(“Volta”), on IBM and Intel systems, respectively. Both GPUs have 16 GB memory. We

50



Chapter 3. Scalable Data-intensive Query Processing

conduct our CPU measurements on a dual-socket IBM POWER9 at 3.8 GHz with 2 × 16
cores and 256 GB memory, and on a dual-socket Intel Xeon Gold 6126 (“Skylake-SP”) at
2.6 GHz with 2 × 12 cores and 1.5 TB memory. The Intel system runs Ubuntu 16.04, and
the IBM POWER9 system runs Ubuntu 18.04. We implement our experiments in C++
and CUDA. We use CUDA 10.2 and GCC 8.4.0 on all systems, and compile all code with
“-O3” and native optimization flags.

Methodology. We measure throughput of the end-to-end join. We define join
throughput as the sum of input tuples divided by the total runtime (i.e., |𝑅 |+ |𝑆 |

runtime ) [367, 385].
For each experiment, we report the mean and standard error over 10 runs. We note that
our measurements are stable with a standard error less than 5% from the mean.

Workloads. In Table 3.2, we give an overview of our workloads. We specify
workloads A and C similar to related work [48, 63, 226]. We scale these workloads 8× to
create an out-of-core scenario. We define workload B as a modified workload A with a
relation 𝑅 that fits into the CPU L3 and GPU L2 caches and represents small dimension
tables. All workloads assume narrow 8- or 16-byte <key, value> tuples. We generate
tuples assuming a uniform distribution, and a foreign-key relationship between 𝑅 and 𝑆 .
Unless noted otherwise, each tuple in 𝑆 has exactly one match in 𝑅. We store the relations
in a column-oriented storage model.

Settings. In the following experiments, we use the Coherence transfer method for
NVLink 2.0 and the Zero Copy method for PCI-e 3.0, unless noted otherwise. We set
up our no-partitioning hash join with perfect hashing, i.e., we assume no hash conflicts
occur due to the uniqueness of primary keys. Our join is equivalent to the NOPA join
described by Schuh et al. [367]. We allocate memory as 2 MiB huge pages on the NUMA
node closest to the GPU, and preallocate the pages at boot time [285] to avoid page
fragmentation. On CPUs, we explicitly bind threads to CPU cores. On the POWER9
CPU, we tune memory reads by disabling stride-N prefetching (DSCR = 0) [188], as we
observed that stride-N prefetching reduces sequential bandwidth. However, sequential
prefetching remains enabled.

Baseline. As a CPU baseline, we use the radix partitioned, multi-core hash join
implementation (“PRO”) provided by Barthels et al. [53]. We modify the baseline to
use our perfect hash function, thus transforming the PRO join into a PRA join [367].
Furthermore, we tune our baseline to use the best radix bits (12 bits), page size (huge
pages), SMT (enabled), software write-combine buffers (enabled) and NUMA locality
parameters for our hardware. As our experiments run on one GPU, we run the baseline
on one CPU.

Experiments. We conduct ten experiments. First, we evaluate the impact of transfer
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Figure 3.11: No-partitioning hash join using different transfer
methods for PCI-e 3.0 and NVLink 2.0.

methods on data processing when using PCI-e 3.0 and NVLink 2.0. Then, we show
the impact of NUMA locality considering the base relations and the hash table. Next,
we explore out-of-core scalability when exceeding the GPU memory capacity with
TPC-H query 6, the probe-side relation 𝑆 , and the build-side relation 𝑅. Furthermore, we
investigate the performance impact of different build-to-probe ratios, as well as skewed
data and varying the join selectivity. Lastly, we investigate heterogeneous cooperation
between a CPU and a GPU that share a hash table.

3.6.2 Experiments

In this section, we present our experimental results and describe our observations.

GPU TransferMethods

In Figure 3.11, we show the join throughput of each transfer method with PCI-e 3.0 and
NVLink 2.0 for workload A (2 GiB ⋈︁ 32 GiB). The outer relation is thus larger than GPU
memory. We load both relations from CPU memory, and build the hash table in GPU
memory.

PCI-e 3.0. We observe that pinning the memory is necessary to reach the peak transfer
bandwidth of 11.4 GB/s. The Staged Copy method is within 8% of Zero Copy, despite

52



Chapter 3. Scalable Data-intensive Query Processing

4.7
6

3.9
7

2.5
5

2.2
5 4.2
8

2.6
1

2.2
9

17.15

2.6
9

2.7
7

2.7
2

2.6
1

Workload A (scaled) Workload B (scaled) Workload C (scaled)
0

5

10

15

20

0

5

10

15

20

0

5

10

15

20

Th
ro
ug

hp
ut

(G
Tu

pl
es
/s
)

Data Location: GPU CPU rCPU rGPU

Figure 3.12: Join performance of the GPU when the base
relations are located on different processors, increasing the
number of interconnect hops from 0 to 3.

copying from pageable memory. The hidden cost of using pageable memory is that we
utilize 8 CPU cores to stage the data into pinned buffers. In contrast, Unified Migration
and Unified Prefetch are 72% and 45% slower than Zero Copy. Although prefetching
avoids the cost of demand-paging, we observe the overheads of evicting cached pages
and mapping new pages in GPU memory. Pageable Copy and Dynamic Pinning are both
significantly slower than Zero Copy. We note that the Coherence method is unsupported
by PCI-e 3.0, due to PCI-e being non-cache-coherent.

NVLink 2.0. In contrast to PCI-e 3.0, NVLink 2.0 achieves up to 5× higher bandwidth.
The Coherence method is within 8% of the maximum possible throughput. The
throughput of Zero Copy and Pinned Copy match that of Coherence, despite using
pinned memory instead of pageable memory. Transfers from pageable memory without
using cache-coherence (i.e., Pageable Copy, Staged Copy, Dynamic Pinning) all achieve
less throughput than Coherence. NVLink underperforms PCI-e in only two cases, when
using either Unified Memory method1. Overall, the Coherence and Zero Copy methods
are fastest, and NVLink 2.0 shows significantly higher throughput than PCI-e 3.0.

Data Locality

We measure the impact of base relation locality in Figure 3.12. We process the workloads
from Table 3.2, and scale them down to fit into GPU memory (13 GiB, 12 GiB, and 10 GiB).
We store 𝑅 and 𝑆 in GPU memory, CPU memory, remote CPU memory, and remote GPU

1We speculate that this is due to the POWER9 driver implementation receiving less optimization than on
x86-64.
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Figure 3.13: Join performance of the GPU when the hash table
is located on different processors, increasing the number of
interconnect hops from 0 to 3.

memory (compare to Figure 3.3(a)). Each step increases the number of interconnect hops
to load the data. In all measurements, we store the hash table in GPU memory.

Workload A. We observe that join throughput decreases by 16–53% as we increase
the number of hops. We see that going from 1 to 2 hops has a larger effect than from 2
to 3 hops, because the X-Bus interconnect has lower throughput than NVLink 2.0 (cf.
Figure 3.2(a)).

Workload B. We notice that storing the memory in GPU memory has 4× higher
throughput than a single hop over NVLink 2.0. The reason is that the hash table is
cached in the GPU’s L2 cache, which has higher random access bandwidth than GPU
memory. For this workload, there is a 46% penalty for traversing three interconnects
instead of one.

Workload C. In contrast to the best-case scenario represented by B, C is a worst-case
scenario, as the relations have equal cardinalities (i.e., |𝑅 | = |𝑆 |). As a result, random
memory accesses to GPU memory dominate the workload.

Summary. Overall, NVLink 2.0 is not the bottleneck for hash joins that randomly
access GPU memory. In addition, increasing the number of hops is mainly limited by
the X-Bus’ bandwidth.

Hash Table Locality

In Figure 3.13, we measure the influence of hash table locality on join performance. We
process workloads A–C that have up to 34 GiB of data, and increase the interconnect
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Figure 3.14: Scaling the data size of TPC-H query 6.

hops to the hash table. In all measurements, we store the base relations in local CPU
memory that is one hop away over NVLink 2.0.

Workloads A and C. We see that a single NVLink 2.0 hop causes an 78–83%
throughput decrease. Adding a second hop and third hop effects another 50% and
15–31%, respectively.

Workload B. We observe that, in contrast to GPU memory, the small hash table is not
cached in the GPU’s L2 cache for NVLink 2.0. The L2 cache is memory-side [431], and
cannot cache remote data. We conclude that reducing random access bandwidth and
increasing latency has a significant impact on join throughput.

Selection and Aggregation Scaling

We scale TPC-H query 6 from scale factor 100 to 1000 in Figure 3.14. This constitutes a
working set of 8.9–89.4 GiB. We assume that no data are cached in GPU memory, thus all
data are read from CPU memory. We run branching and predicated variants. The CPU
is an IBM POWER9, for which we set 4-way SMT in the branching variant and ensure
that predication uses SIMD instructions.

Interconnects. The CPU achieves the highest throughput, and outperforms
NVLink 2.0 by up to 20% and PCI-e 3.0 by up to 16.2×. However, NVLink 2.0 achieves a
speedup of up to 13.8× over PCI-e 3.0, thus considerably closing the gap between the
GPU and the CPU.

Branching vs. Predication. Counterintuitively, branching performs better than
predication on the GPU with NVLink 2.0. This is caused by the query’s low selectivity
of only 1.3%, that enables us to skip transferring parts of the input data. In contrast,
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Figure 3.15: Scaling the probe-side relation.

predication loads all data and is thus bounded by the interconnect bandwidth.
Overall, NVLink 2.0 significantly narrows the gap between the CPU and the GPU for

computationally light workloads, and enables the GPU to process large data volumes.

Probe-side Scaling

We analyze the effect of scaling the probe-side relation on join throughput in Figure 3.15.
We use workload C with 16-byte tuples, and increase the probe-side’s cardinality from
128–8196 million tuples (1.9–122 GiB). We store the base relations in CPU memory, and
the hash table in GPU memory.

Observations. We notice that the throughput of NVLink 2.0 is 3.3–6.4× faster
than PCI-e 3.0 and 2.4–4.2× faster than the CPU baseline. Throughput improves with
larger data due to the changing build-to-probe ratio, that we investigate in detail in
Section 3.6.2. In contrast, the throughput of PCI-e 3.0 remains constant, because of the
transfer bottleneck. Thus, PCI-e 3.0 cannot outperform the CPU baseline.

Overall, we are able to process data volumes larger than the GPU’s memory capacity
at a faster rate than the CPU.

Build-side Scaling

In Figure 3.16, we scale the hash table size up to 2× the GPU memory capacity. The total
data size reaches up to 91.5 GiB, counting both base relations plus the hash table. While
scaling, we examine the effect of hash table placement strategies (see Section 3.4.3). We
use workload C with 16-bytes tuples and increase the cardinality of both base relations.

56



Chapter 3. Scalable Data-intensive Query Processing

0

1

2

0 512 1024 1536 2048
Build & probe relation size (million tuples)

Th
ro
ug

hp
ut

(G
Tu

pl
es
/s
)

CPU (PRA) PCI-e 3.0 NVLink 2.0 NVLink 2.0 Hybrid HT

PCI-e 3.0 GPU memory

Figure 3.16: Scaling the build-side relation.

PCI-e 3.0. We note that throughput reaches 0.77 G Tuples/s as long as the hash table
can be stored in GPU memory, which is 0–27% slower than the CPU baseline. For hash
tables that are larger, throughput declines by 97% to 0.02 G Tuples/s, which is 22× slower
than the CPU baseline.

NVLink 2.0. Our first observation is that throughput is 3.3× higher than PCI-e 3.0
and 2.4–3.2× higher than the CPU baseline for in-GPU hash tables. The throughput
degrades above a hash table size of 8 GiB due to TLB misses (see Section 4.2.4). Although
throughput declines by 85% for out-of-core hash tables, performance remains 12–20×
higher than PCI-e 3.0. Although NVLink 2.0 is slower than the CPU baseline for the
out-of-core hash table, NVLink 2.0 remains within 23% of the CPU.

NVLink 2.0 with Hybrid Hash Table. We notice that storing parts of the hash table
in GPU memory achieves a speedup of 1–3× over only NVLink 2.0, despite facing a
uniform foreign key distribution. We summarize that NVLink 2.0 helps to achieve higher
out-of-core throughput than PCI-e 3.0, and that throughput degrades gracefully, instead
of riding over a performance cliff when the hash table is larger than the GPU’s memory
capacity.

Build-to-probe Ratios

In Figure 3.17, we quantify the impact of different build-to-probe ratios on join throughput.
We use workload C with 16-byte tuples, and increase 𝑆 with a |𝑅 |-to-|𝑆 | ratio from 1:1 up
to 1:16 (up to 2 GiB ⋈︁ 30.5 GiB). We store the base relations in CPU memory, and the
hash table in GPU memory.

Observations. The build phase takes 70% of the time, and is thus 56% slower than
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Figure 3.17: Different build-to-probe ratios on NVLink.
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Figure 3.18: Join performance when the probe relation follows
a Zipf distribution.

the probe phase. The impact is most visible for 1:1 ratios. For larger ratios, the build-side
takes up a smaller proportion of time, which makes the join faster. We are able to observe
these differences because NVLink 2.0 eliminates the transfer bottleneck for this use-case.

Data Skew

We explore a join on data skewed with a Zipf distribution in Figure 3.18. We use
workload A (34 GiB), but skew 𝑆 with Zipf exponents between 0–1.75. With an exponent
of 1.5, there is a 97.5% chance of hitting one of the top-1000 tuples. Thus, increasing data
skew tends to increase cache hits. To show the effect of caching, we place the hash table
in CPU memory, in GPU memory, and in a hybrid hash table with a varying CPU-to-GPU
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Figure 3.19: The effect of join selectivity on throughput.

memory ratio.
Observations. We observe that higher skew leads to a higher throughput of 3.9×,

4.4×, and 9.4× for the CPU, NVLink 2.0, and PCI-e 3.0, respectively. This effect is not
present for hash tables in GPU memory, as transferring the base relations from CPU
memory is the bottleneck. Thus, we see throughput increase with the hybrid hash table.

Join Selectivity

We evaluate the effect of join selectivity on join throughput in Figure 3.19. We vary the
selectivity of Workload A (34 GiB) from 0–100% by randomly selecting a subset of 𝑅. We
show the performance of in-GPU and out-of-core hash table placement, and compare
the GPU against an IBM POWER9 CPU running the same NOPA join variant.

Observations. Our measurements show that join throughput decreases with higher
selectivity. The decrease is largest at 28% for NVLink 2.0 with a GPU memory hash table.
In contrast, PCI-e 3.0 slows down by only 4% with a hash table in CPU memory. We
notice that both interconnects achieve throughput higher than the calculated bandwidth
would suggest. This is because only the join key is necessary to establish a match. If
there is no match, the value is not accessed. However, if there are one or more matches,
the whole cache line is loaded. In effect, at 10% selectivity, 81.5% of values are loaded,
resulting in a throughput drop.

Overall, NVLink 2.0 with an out-of-core hash table achieves similar performance to
the CPU, and 6.1–7.4 × better performance with a GPU-local hash table.
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Figure 3.20: Cooperative CPU and GPU join. Het uses a shared
hash table in CPU memory, whereas GPU + Het uses private
hash tables in processor-local memory.
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CPU/GPU Co-processing Scale-up

In Figure 3.20(a), we show the join throughput when scaling up the join to a CPU and
a GPU using the cooperative Het and GPU +Het strategies described in Section 3.5.2.
We use the workloads in Table 3.2, that have a size up to 34 GiB. We drill down into the
individual join phases of workload C in Figure 3.20(b) to gain more insights. As the CPU
we use an IBM POWER9, and execute the same NOPA algorithm that we run on the
GPU. We store the hash table in CPU memory for the CPU and Het execution strategies,
and in GPU memory for the GPU and GPU +Het strategy. In GPU +Het, we copy the
hash table to CPU memory for the probe phase. The Het and GPU + Het strategies use
32 MiB CPU and 128 MiB GPU morsels, whereas data are statically assigned to threads
in the CPU-only and GPU-only strategies. We store the base relations in CPU memory
for all strategies.

Workload A. We observe that the Het, Het + GPU, and GPU execution strategies run
faster than the CPU strategy by 19%, 4.7×, and 5.8×, respectively. Adding a GPU always
increases throughput, and the GPU without the CPU achieves the highest throughput.
The GPU-only strategy is faster than both heterogeneous strategies.

Workload B. We see that Het is 70% slower than CPU-only, whereas Het + GPU and
GPU achieve speed-ups of 1.8× and 1.4×. As the CPU is able to cache the small hash table,
storing the hash table in GPU memory is necessary for the GPU to increase throughput
over the CPU. The cooperative GPU + Het strategy outperforms the GPU-only strategy
by 31%.

Workload C. We notice that all strategies which use a GPU achieve higher throughput
than the CPU-only strategy: Het by 8%, GPU + Het by 2.4×, and GPU by 4.6×.

Time per Join Phase in Workload C. To understand why the GPU-only strategy often
outperforms the heterogeneous strategies, we investigate the join phases individually.

In both phases, we notice that adding a GPU to the CPU increases performance, but
that the GPU by itself is fastest. We observe that a processor-local hash table increases
throughput (Het vs. GPU + Het), and that transitioning from a CPU-only to a CPU/GPU
solution (Het and GPU + Het) decreases processing time.

Overall, using a GPU achieves the same or better throughput than the CPU-only
strategy for most of our workloads. However, caching the hash table in GPU memory
results in the best performance.
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3.7 Discussion

In this section, we discuss the key insights that we obtained from our fast interconnects
characterization (Section 3.2) and data processing evaluation (Section 3.6).

(1) GPUs have high-bandwidth access to CPU memory. We observed that GPUs
can load data from CPU memory with bandwidth similar to the CPU. Thus, offloading
data processing on GPUs becomes viable even when the data is stored in CPU memory.

(2) GPUs can efficiently process large, out-of-core data. A direct consequence of
(1) is that transfer is no longer a bottleneck for complex operators. We have shown
speedups of up to 6× over PCI-e 3.0 for hash joins operating on a data structure in GPU
memory. In these cases, performance is limited by other factors, e.g., computation or
GPU memory.

(3) GPUs are able to operate on out-of-core data structures, but should use GPU
memory if possible. In our evaluation, we showed up to 20× higher throughput with
NVLink 2.0 than with PCI-e 3.0. Despite this speedup, operating within GPU memory is
still 6.5× faster compared to transferring data over NVLink 2.0. However, for hash tables
up to 1.8× larger than GPU memory, we achieved competitive or better performance
than an optimized CPU radix join by caching parts of the hash table in GPU memory.

(4) Scaling-up co-processors with CPU + GPU makes performance more robust. A
cache-coherent interconnect enables processors to work together efficiently. Processors
that cooperate avoid worst-case performance, thus making the overall performance
more robust.

(5) Due to cache-coherence, memory pinning is no longer necessary to achieve
high transfer bandwidth. We evaluated eight transfer methods, and discovered that fast
interconnects enable convenient access to pageable memory without any performance
penalty. The benefit is that memory management becomes much simpler because we no
longer need staging areas in pinned memory.

(6) Fair performance comparisons between GPUs vs. CPUs have become practical.
As a final point, in this chapter, we have studied the performance of a GPU and a CPU
that load data from the same location (i.e., CPU memory). Fast interconnects enabled us
to observe speedups without caching data in GPU memory, although the CPU remains
faster in some cases.

Summary. With fast interconnects, GPU acceleration becomes an attractive scale-up
alternative that promises large speedups for DBMSs.
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3.8 RelatedWork

We contrast our contributions to related work in this section.
Transfer Bottleneck. The realization that growing data sets do not fit into the co-

processor’s memory [161, 424] has led recent works to take data transfer costs into account.
GPU-enabled DBMSs such as GDB [170], Ocelot [176], CoGaDB/Hawk/HorseQC [78,
79, 146], and HAPE [102, 103], as well as accelerated machine learning frameworks
such as SystemML [40] and DAnA [264], are all capable of streaming data from CPU
memory onto the co-processor. HippogriffDB [250] and Karnagel et al. [219] take
out-of-core processing one step further by loading data from SSDs. The effect of data
transfers has also been researched for individual relational operators on GPUs [159, 213,
219, 259, 260, 357, 385, 395]. All of these works observe that transferring data over a
PCI-e interconnect is a significant bottleneck when processing data out-of-core. In this
chapter, we investigate how out-of-core data processing can be accelerated using a faster
interconnect.

Transfer Optimization. The success of previous attempts to resolve the transfer
bottleneck in software heavily depends on the data and query. Caching data in the
co-processor’s memory [78, 176, 218] assumes that data are reused, and is most effective
for small data sets or skewed access distributions. Data compression schemes [136, 359]
must match the data to be effective [115, 131], and trade off computation vs. transfer time.
Approximate-and-refine [340] and join pruning using Bloom filters [163] depend on the
query’s selectivity, and process most of the query pipeline on the CPU. In contrast to these
approaches, we show that fast, cache-coherent interconnects enable new acceleration
opportunities by improving bandwidth, latency, as well as synchronization cost.

Transfer Avoidance. Another approach is to avoid the transfer bottleneck alto-
gether by using a hybrid CPU-GPU or CPU-FPGA architecture [173, 174, 214, 255, 318].
Hybrid architectures integrate the CPU cores and accelerator into a single chip or
package, whereby the accelerator has direct access to CPU memory over the on-chip
interconnect [76, 165]. In contrast to these works, we consider systems with discrete
GPUs, because discrete co-processors provide more computational power and feature
high-bandwidth, on-board memory.

Out-of-core GPU Data Structures. Hash tables [74, 223], B-trees [43, 212, 372, 421],
log-structured merge trees [41], and binary trees [225] have been proposed to efficiently
access data using GPUs. In contrast, we investigate hash tables in the data management
context. We demonstrate concurrent CPU and GPU writes to a shared data structure,
and perform locality optimizations. In addition, our approach is more space-efficient
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than previous shared hash tables [74].
Fast Interconnects. NVLink 1.0 and 2.0 have been investigated previously in

microbenchmarks [208, 248, 249, 328, 329] and for deep learning [230, 399, 419]. In
contrast to these works, we investigate fast interconnects in the data management
context. To the best of our knowledge, we are the first to evaluate CPU memory latency
and random CPU memory accesses via NVLink 1.0 or 2.0. Raza et al. [349] study lazy
transfers and scan sharing for HTAP with NVLink 2.0. In contrast, we conduct an
in-depth analysis of fast interconnects.

3.9 Conclusion

We conclude that, on the one hand, fast interconnects enable new use-cases that were
previously not worthwhile to accelerate on GPUs. On the other hand, currently
NVLink 2.0 represents a specialized technology that has yet to arrive in commodity
hardware. Overall, in this chapter we have made the case that future DBMS research
should consider fast interconnects for accelerating workloads on co-processors.
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Scalable and Robust Stateful Data Processing

GPUs cannot scale joins to large data volumes due to two limiting factors: (1) large state
does not fit into the GPU memory, and (2) spilling state to CPU memory is constrained
by the interconnect bandwidth. In this chapter, we propose a new join algorithm that
scales to large data volumes by taking advantage of fast interconnects. Fast interconnects
such as NVLink 2.0 connect the GPU to CPU memory at a high bandwidth, and thus
enable us to design our join to efficiently spill its state. As a result, GPU-enabled DBMSs
are able to scale the join state beyond the GPU memory capacity.

4.1 Introduction

GPU-enabled DBMSs obtain a performance advantage from GPU join and group-by
aggregation queries with an in-GPU state [78, 146, 161, 170, 374, 424]. However, based on
our insights obtained in Chapter 3, GPUs cannot efficiently scale to a large, out-of-core
state due to the data transfer bottleneck. This hardware limitation leads to a narrow
scope where DBMSs benefit from GPUs.

Nevertheless, as we illustrate in Figure 4.1, higher interconnect bandwidth is necessary,
but not sufficient for high scalability. Even if the GPU is given a faster interconnect, the
CPU outperforms the GPU when joining two large data sets. Therefore, we identify
three fundamental challenges that need to be addressed to widen the applicability of
GPUs:

Scalability. GPU joins store their state in GPU memory to increase throughput [171,
213, 288, 321, 374]. Due to the limited capacity of GPU memory, GPU joins cannot
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Figure 4.1: Out-of-core state results in a performance cliff and
a slow-down, despite using a fast interconnect. In contrast,
our Triton join gracefully scales to joins with a large state.

efficiently scale to a large state [261]. In contrast, CPUs [23, 200, 393] have two orders-
of-magnitude higher memory capacity than GPUs [22, 297, 302]. Thus, we must adapt
GPU joins to spill their state to CPU memory in order to achieve scalability.

Robustness. Spilling the join state to CPU memory results in a performance cliff [261].
These sharp performance drops are difficult to account for in query optimizers, because
cardinality estimates can be significantly wrong [101, 270]. Thus, GPU-enabled DBMSs
must gracefully scale to large data sizes for a consistent user experience.

Efficiency. State-of-the-art approaches reduce interconnect transfers by shifting
computations from the GPU to the CPU [159, 163, 340, 385, 395]. However, both
interconnect bandwidth and CPU cycles are scarce resources. DBMSs should use the
GPU to offload computations from the CPU, while maximizing performance.

Fast interconnects have the potential to help us address the above challenges and
improve join throughput by providing high-bandwidth, cache-coherent access to CPU
memory. Our goal is to enable GPUs to process joins with a state that exceeds the GPU
memory capacity. Thus, we consider joins smaller and larger than the GPU memory.
For large joins, we partition data out-of-core in CPU memory using the fast interconnect
to achieve data locality during the join. In contrast, small joins require us to cache all
intermediate results in GPU memory to avoid unnecessary data transfers. We combine
the GPU-based partitioning and the caching in our new, hierarchical hybrid hash join
algorithm: 3H+ ≡ the Triton join.

Overall, our contributions are as follows:

1. We investigate the requirements of an out-of-core GPU join in regard to fast
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Figure 4.2: The CPU-partitioned join strategy splits state into
small partitions before starting to process data on the GPU.

interconnects, and identify hardware bottlenecks that limit scalability (Section 4.2).

2. We propose a new GPU radix partitioning algorithm that takes advantage of
fast interconnects to achieve a high bandwidth and scale to large data volumes
(Section 4.3).

3. We present our new Triton join algorithm, a scalable radix-partitioned GPU hash
join that partitions data using the GPU and caches partitioned data in GPU memory
(Section 4.4).

The further structure of this chapter is as follows. We motivate our approach by
revisiting out-of-core GPU joins in Section 4.2. After that, we demonstrate our out-of-core
radix partitioning approach in Section 4.3, and then overcome these challenges with our
Triton join in Section 4.4. In Section 4.5, we show our evaluation and discuss our insights.
Finally, we review related work in Section 4.6 and conclude in Section 4.7.

4.2 Revisiting Out-of-Core GPU Joins

Existing out-of-core join algorithms assume to varying degrees that interconnect band-
width is the bottleneck, which fundamentally shapes the design strategy underpinning
the algorithm. In this section, we examine how fast interconnects change this assumption,
and study the impact of the interconnect on the join strategy.

We first discuss the CPU-partitioned join strategy (Section 4.2.1), as we find it an
enlightening point in the design space due to its focus on the transfer volume. Then, we
show that fast interconnects enable the GPU to process out-of-core data (Section 4.2.2).
Based on this insight, we argue that fast interconnects open the door for a new high-level
design, the GPU-partitioned join strategy (Section 4.2.3). Finally, we analyze the hardware
capabilities and limitations to inform our detailed design choices (Section 4.2.4).
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Figure 4.3: Data partitioning throughput of a CPU and a GPU
for different source and destination locations.

4.2.1 The CPU-Partitioned Join Strategy

A recent CPU-partitioned join strategy proposes to partition the data on the CPU before
transferring it to the GPU [385]. The goals are to minimize data transfers across the
interconnect, and to access the join’s state efficiently in GPU memory.

We outline this join strategy in Figure 4.2. It consists of three phases. First, the CPU
partitions the data into working sets that individually fit into GPU memory. Then, the
strategy transfers a working set to the GPU. Third, the GPU joins the relations within
the working set. Steps two and three are repeatedly executed in a pipeline to hide the
transfer latency. Although the partitioning and transfer may overlap, at least one relation
must be completely partitioned before starting the join.

The CPU can initially transfer only a fraction of the data to the GPU, as only
one working set completely fits into GPU memory at a time. Let this fraction be
𝛼 := |working set |

|data | . To saturate the interconnect bandwidth, the CPU must partition at a
rate higher than 1/𝛼 × [transfer bandwidth]. For example, with a 12 GiB/s transfer rate
and 𝛼 = 1/4, the CPU must partition at 4 · 12 GiB/s = 48 GiB/s. However, the partitioning
throughput must increase to 260 GiB/s in order to saturate a 65 GiB/s fast interconnect.

We argue that such a partitioning rate is unrealistically fast, as it would exceed the CPU
memory bandwidth even when using multiple CPUs. As a result, the CPU-partitioned
strategy underutilizes the GPU and the fast interconnect.

4.2.2 Fast Interconnects Outpace CPUs

Fast interconnects provide a new opportunity to utilize hardware resources efficiently
by computing all join phases on the GPU. We show that if the join is optimized for a fast
interconnect, then the GPU is able to outperform a CPU even for this data-intensive task.
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Figure 4.4: The GPU-partitioned join strategy processes both
the partition and join phases on the GPU, spilling state to CPU
memory if necessary.

We demonstrate our insight in Figure 4.3. We measure the partitioning throughput of
a CPU and a GPU, and distinguish between the two extreme cases: (a) either all resulting
partitions fit into GPU memory or (b) all partitions are stored to CPU memory. Both
processors read the base relation from CPU memory, and split the data into 512 partitions.
We observe that in both cases the GPU is faster than the CPU. Conversely, despite
transferring all partitions at once (𝛼 = 1), the CPU cannot saturate the fast interconnect.

Our take-away is that fast interconnects require a new approach for GPU joins to take
full advantage of the hardware. The existing CPU-partitioned strategy underutilizes the
GPU and the fast interconnect. Thus, a GPU-centric approach would be able to utilize
the available hardware resources better.

4.2.3 The GPU-Partitioned Join Strategy

Our goal is to compute the join end-to-end on the GPU. For this reason, we propose a
new, GPU-partitioned join strategy that is optimized for GPUs with fast interconnects.

We highlight our GPU-partitioned join strategy in Figure 4.4. Our strategy works
as follows. In the partitioning phase, the GPU loads the data from CPU memory, and
caches the resulting partitions in GPU memory. If this state exceeds the GPU memory
capacity, the GPU spills the remainder to CPU memory. In the join phase, the GPU loads
the spilled state from CPU memory again.

We overlap transfers and computations using two methods. For phases that consist
of a single GPU kernel, we rely on the hardware cache-coherence [261]. In contrast, for
phases consisting of multiple kernels, we describe a new transfer method in Section 4.4.2.

Overall, the advantages of our strategy are that (1) computation is offloaded to the
GPU and that (2) the join gracefully scales to out-of-core state. The trade-off is a 1–2×
higher transfer volume, depending on how many data are cached vs. spilled to CPU
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Figure 4.5: GPU interconnect bandwidth of a random access
pattern to CPU memory with varying access granularities.

memory.

4.2.4 Capabilities of Fast Interconnects

To efficiently implement our GPU-partitioned join strategy in practice, we require an
in-depth understanding of the interconnect hardware. Crucially, if data is spilled during
the partitioning phase, the GPU performs random writes to CPU memory [267]. Thus, we
analyze the key metrics for random accesses: the interconnect bandwidth of fine-grained
memory accesses, and the TLB miss latency.

Efficient Transfers with Fine Granularity.

Ideally, a join running on the GPU achieves the full interconnect bandwidth when access-
ing CPU memory. However, the bandwidth achieved in practice depends on the access
granularity, as the GPU executes memory accesses in units of memory transactions [304].
Memory transactions have a hardware-specific size. If accesses are fine-grained, i.e.,
smaller than the memory transaction size, then each memory transaction only carries
a partial payload. This leads to a reduced bandwidth utilization. Although memory
transactions in GPU memory have been researched [204, 221, 386], prior work does not
consider the effect on the interconnect bandwidth.

Setup. We experimentally determine the minimum required memory access gran-
ularity to achieve the full interconnect bandwidth in Figure 4.5(a). In the experiment,
the GPU randomly accesses CPU memory on the nearest NUMA node. We first scale
the access granularity from 4–16 bytes by increasing the integer type from 32–128 bits.
Then, we continue to scale by coalescing 2–32 threads (i.e., up to a warp) for 32–512-byte
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accesses. We measure read and write accesses within a 1 GiB array, and efficiently
generate the random access pattern via a linear congruential generator [229]. All accesses
are aligned according to their granularity, i.e., a 512-byte access is aligned to 512 bytes.

Results. In the measurement, we observe that the interconnect bandwidth grows
linearly with the access granularity. Small reads up to 64 bytes are 44–74% faster than
writes. At 128 bytes, the bandwidth of random accesses equals the bandwidth of a
coalesced sequential access pattern.

Furthermore, in Figure 4.5(b), we determine that misaligned accesses reduce the
achieved interconnect bandwidth. We measure that misaligning a 512-byte memory
access by 16 bytes reduces the bandwidth by 20% for reads and 56% for writes.

Analysis. From our results, we deduce that “Volta” GPUs coalesce CPU memory
accesses via NVLink 2.0 into 128-byte memory transactions (or larger) instead of 32 bytes
in GPU memory [221, 388]. These transactions are aligned to 128-byte cachelines. Our
analysis is substantiated by vendor documentation on NVLink 2.0 [191, 304] and an
investigation of PCI-e [281]. However, it remains unclear why small reads outperform
small writes.

Our findings differ from GPU literature, which suggests that GPU random accesses
to CPU memory are slower that sequential transfers [261], and that GPU programmers
should coalesce memory accesses of warps with natural alignment on the data type [20,
304].

Overall, if accesses are perfectly coalesced as described above, GPUs are able to
achieve the full interconnect bandwidth for random CPU memory accesses at a 128-byte
granularity.

TLB Miss Cost with Fast Interconnects.

Fast interconnects give GPUs high-bandwidth access to terabytes of data in CPU memory.
Due to the large data size, a join randomly accesses thousands of memory pages. As
a result, virtual to physical memory address translations impact join throughput. We
quantify the address translation cost for GPUs, and discover that TLB misses when using
a fast interconnect are up to an order-of-magnitude more expensive than TLB misses in
GPU memory.

Setup. In Figure 4.6, we compare the TLB miss costs of GPU accesses to GPU memory
and to CPU memory. We measure the latency of individual memory accesses with
fine-grained pointer chasing [273]. We perform 16, 32, and 64 MiB strides in a memory
range of 6–10.7 GiB in GPU memory and a range of 1–87.5 GiB in CPU memory. We
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Figure 4.6: TLB miss latency for GPU memory, and for CPU
memory via NVLink 2.0.

allocate 2 MiB huge pages in CPU memory on the NUMA node closest to the GPU. To
avoid page fragmentation, we preallocate huge pages early at boot time [285]. To prevent
the hardware from caching translations across runs, we flush the IOTLB before each run
by calling the mprotect system call [157]. We observe that the GPU TLBs are flushed by
the CUDA runtime before each kernel launch. As the L1 data cache is virtually tagged
and thus does not incur address translations [208], we bypass the L1 cache with the cg
PTX cache hint [307].

Results. In GPU memory, we observe that the GPU L2 TLB covers 8 GiB. We
measure a L2 TLB hit latency of 151.9 ± 4.8 ns and a miss latency of 226.7 ± 4.8 ns. Our
measurements match the results of Jia et al. [208], who state that “Volta” GPUs have a L1
TLB in addition to the L2 TLB.

In CPU memory, the L2 TLB also covers 8 GiB with a hit latency of 449.7 ± 32.4 ns.
Beyond the L2 TLB, we notice two miss plateaus, one at 9.5–32 GiB and another above
37 GiB. For the first, we measure a latency of 532.9 ± 45.8 ns, and 3186.4 ± 154.0 ns for the
second. We speculatively name the plateaus L3 TLB* and Miss*.

Analysis. We observe that the L2 TLB page size is 32 MiB not only in GPU
memory [208, 217], but also in CPU memory. Thus, 16 physically adjacent 2 MiB pages
are likely coalesced on a page table walk [121, 122, 191, 217, 335].

However, we lack evidence to fully explain the TLB misses that occur in CPU memory.
The high miss latency (Miss*) indicates a GPU TLB miss, that results in an IOTLB or
IOMMU lookup. In contrast, the L2 TLB miss penalty to the L3 TLB* is only 83 ns. On
the one hand, this is likely too short to traverse the interconnect. On the other hand,
the L2 TLB miss penalty in GPU memory is similar at 75 ns. As NVLink 2.0 enables
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Table 4.1: Partitioning design goals.

Algorithm Space Efficient Perfect Coalescing High Fanout
SWWC ✗ ✗ ✗

Linear ✓ ✗ ✗

Shared ✓ ✓ ✗

Hierarchical ✓ ✓ ✓

a system-wide page table [191], we assume that the GPU does not duplicate the table
in GPU memory. Thus, our results might indicate that another translation caching
layer exists [54, 59, 205], that is distinct from the IOTLB. However, we leave a deeper
investigation to future work.1

In conclusion, TLB misses are a hard problem to mitigate for out-of-core algorithms.
However, we find that if an algorithm carefully manages its TLB misses and access
granularity, then the GPU can achieve a high interconnect bandwidth even for random
accesses.

4.3 Efficiently Partitioning Data over a Fast Interconnect

In order to join large data efficiently, the GPU first needs to partition the data out-of-
core. We transform our hardware insights from Section 4.2.4 into concrete design goals
(Section 4.3.1), on which we base two new radix partitioning algorithms for GPUs.
First, we increase the interconnect utilization of random writes in our shared software
write-combining (Shared) algorithm (Section 4.3.2). In a next step, we reduce GPU TLB
misses for high fanouts in our hierarchical software write-combining (Hierarchical) algorithm
(Section 4.3.3).

4.3.1 Design Goals

Achieving high partitioning throughput requires us to consider both the GPU architecture
and the fast interconnect. To this end we formulate three design goals. First, the algorithm
should be space efficient, due to the small scratchpad capacity. As a thread block shares the
scratchpad, all accesses to the scratchpad must be thread-safe. Second, random memory
accesses over the interconnect should adhere to perfect coalescing (see Section 4.2.4).
Finally, large data sets require a high fanout to reduce the size of each partition. This
incurs TLB misses, which should be avoided (see Section 4.2.4).

State-of-the-art algorithms do not achieve these goals, as we summarize in Table 4.1.

1According to Nvidia, this information is currently not publicly available.
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Figure 4.7: A thread block shares scratchpad buffers, and
flushing is coalesced. Shown is one warp with four threads.

The SWWC algorithm allocates thread-private buffers, as CPUs have large caches. Linear
is designed for in-GPU partitioning, and opportunistically coalesces writes by sorting
batches of tuples. Thus, we devise a new partitioning approach optimized for out-of-core
partitioning.

4.3.2 Shared: High-Throughput Partitioning

We design our shared software write-combining (Shared) algorithm for space-efficiency and
perfect coalescing. We first provide an overview of Shared, and then examine the buffer
and flush phases in detail. Finally, we discuss how Shared achieves our design goals.

Description. In Figure 4.7, we show the execution flow of our algorithm in seven
steps. On a high level, Steps 1–3 make up the fill phase, and Steps 4–6 constitute the flush
phase. Step 7 begins a new fill phase. Before execution begins, the input is divided into
equally-sized chunks which are assigned to thread blocks.

Fill Phase. We display the fill phase in Listing 4.1. Execution proceeds in warps.
In Step ➀, each thread reads a tuple into a register and hashes the key. Then (➁), each
thread tries to acquire a free slot in the buffer indicated by the hash. Threads acquire slots
atomically, as the buffers are shared among all warps. If a thread successfully acquires
an empty slot ( ) in Step ➂, the thread stores its tuple into the buffer and marks itself
“done”. If all threads in a warp are “done”, the warp proceeds to the next fill phase. Else,
if any thread encountered a full buffer ( ), the warp proceeds to the flush phase.

Flush Phase. In Listing 4.2, we specify the flush phase. The flush phase begins with
Step ➃. All active threads (i.e., not “done”) of the warp participate in a leader ballot, and
elect a thread as the warp leader. We define the first invalid slot (i.e., the buffer size) as a
lock on the buffer. Thus, the full buffers are locked since Step two. All active threads
except the leader immediately release their lock to enable parallel flushes by other warps.
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1 // Fill tuples into buffers
2 for (i = threadIdx.x; i < tuples; i += blockDim.x) {
3 // Step ➀: Read a tuple and hash its key
4 Tuple tuple = { keys[i], values[i] };
5 p_index = hash(tuple.key) % FANOUT;
6

7 slot = 0; done = false;
8 do {
9 // Try buffering a tuple

10 if (not done) {
11 // Step ➁: Acquire a free slot
12 slot = atomicAdd(&slots[p_index], 1);
13

14 if (slot < BUFFER_SIZE) {
15 // Step ➂: Store tuple into buffer
16 buffers[p_index][slot] = tuple;
17 __threadfence_block(); //Wait for write
18 atomicAdd(&fillstate[p_index], 1); //Mark written
19 done = true;
20 }
21 }

. . . [..] // Flush phase, see Listing 4.2
63

64 // Step ➅: Repeat flush phase until each thread has buffered its tuple
65 } while (__any_sync(WARP_MASK, not done));
66

67 } // Step ➆: Start a new fill phase
68

69 [..] // Flush all buffers

Listing 4.1: Fill phase of Shared partitioning algorithm.
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22 // Flush a full buffer
23

24 // Step ➃: Elect a warp leader
25 is_candidate = (slot == BUFFER_SIZE); // Implicit lock
26 do_flush = __ballot_sync(WARP_MASK, is_candidate);
27

28 // Step ➄: Flush leader's buffer
29 if (do_flush) {
30 leader_id = __ffs(ballot) - 1;
31

32 // Unlock, maybe another warp will flush
33 if (is_candidate && leader_id != LANE_ID) {
34 slots[p_index] = BUFFER_SIZE;
35 }
36 __syncwarp(); //Wait for unlock
37

38 if (leader_id == LANE_ID) {
39 //Wait until buffer is full
40 while (fillstate[p_index] != BUFFER_SIZE);
41 fillstate[p_index] = 0;
42 }
43 __syncwarp(); //Warp waits until leader is ready
44

45 // Get leader's flush parameters
46 leader_index = __shfl_sync(WARP_MASK, p_index, leader_id);
47 dst = &p_output[p_offsets[leader_index]];
48 src = &buffers[leader_index][0];
49

50 // Flush buffer
51 warp_memcpy(dst, src, BUFFER_SIZE);
52

53 if (leader_id == LANE_ID) {
54 // Update memory offset of partition
55 p_offsets[leader_index] += BUFFER_SIZE;
56 __threadfence_block();
57

58 // Unlock
59 slots[leader_index] = 0;
60 }
61 }
62 // See Listing 4.1 for remaining steps

Listing 4.2: Flush phase of Shared partitioning algorithm.
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Figure 4.8: Buffer tuples in a two-level SWWC hierarchy for
high fanouts. The 2nd level provides space for more buffers.

Next (➄), the warp flushes the leader’s buffer. Then, in Step ➅, the active threads retry
acquiring a slot. If at least one thread fails to acquire a slot, the warp repeats the flush
phase until all threads have buffered their tuple and are marked “done”. Finally, all
threads start a new fill phase in Step ➆.

Design Discussion. In our design, two aspects are important to efficiently share
buffers and perfectly coalesce writes. First, filling the buffers is thread-safe but lock-free.
Only flushing a buffer requires a lock, which we assign to a warp instead of spinning
on the lock. Second, each flush is a multiple of the memory transaction size and also
aligned to the transaction size. This ensures that optimally-sized writes are not split into
two memory transactions.

4.3.3 Hierarchical: High-Fanout Partitioning

To reduce expensive GPU TLB misses (see Section 4.2.4), we introduce a new hierarchical
shared software write-combine (Hierarchical) algorithm. Hierarchical extends the SWWC
buffers in scratchpad memory with a second-level cache in GPU memory. By adding
buffer capacity, Hierarchical incurs less TLB misses when writing to CPU memory, and
we are thus able to increase the fanout.

Description. We derive the Hierarchical algorithm from Shared by extending the
flush phase into a two-level hierarchy in Figure 4.8. The fill phase remains unchanged.
The new flush phase consists of seven steps, that are executed by a warp. We provide a
detailed description in Listing 4.3.

L1 Eviction. The flush begins when the warp encounters a full buffer and obtains
a lock on that buffer in Step ➀. The lock is enforced by the fill-state counter when the
buffer is full. In Step ➁, the warp evicts all tuples from the L1 buffer to its corresponding
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22 // Flush a full buffer with buffer hierarchy
23

24 // Step ➀: Obtain lock on buffer
25 int is_candidate = (pos == L1_BUFFER_SIZE);
26 if (__ballot_sync(WARP_MASK, is_candidate)) {

. . . [..] // Same as in Shared algorithm, see Listing 4.2
47

48 // Get leader's L2 slot and active L2 buffer
49 l2_slot = l2_slots[leader_index];
50 active_l2_buffer = l2_buffer_map[leader_index];
51

52 // Step ➁: Evict tuples from L1 buffer to L2 buffer
53 dst = &l2_buffers[active_l2_buffer][l2_slot];
54 src = &buffers[leader_index][0];
55 warp_memcpy(dst, src, L1_BUFFER_SIZE);
56 __syncwarp(); //Warp waits until warp_memcpy is finished
57

58 // Update L2 slot and check if need to flush L2 buffer
59 do_l2_flush = (++l2_slot == slots_per_l2_buffer);
60

61 // Step ➂: Swap in an empty L2 buffer
62 if (do_l2_flush) {
63 l2_slot = 0;
64 if (leader_id == LANE_ID) {
65 l2_buffer_map[leader_index] = spare_pool;
66 dst = &p_output[p_offsets[leader_index]];
67 p_offsets[leader_index] += L2_BUFFER_SIZE;
68 }
69 __syncwarp(); //Warp waits until leader has swapped buffer
70 }
71

72 // Step ➃: Unlock L1 buffer
73 if (leader_id == LANE_ID) {
74 l2_slots[leader_index] = l2_slot;
75 __threadfence_block();
76 slots[leader_index] = 0;
77 }
78

79 // Step : Asynchronously flush L2 buffer
80 if (do_l2_flush) {
81 dst = __shfl_sync(WARP_MASK, dst, leader_id);
82 src = &l2_buffers[active_l2_buffer][0];
83 warp_memcpy(dst, src, L2_BUFFER_SIZE);
84

85 // Step : Add empty buffer to spare pool
86 spare_pool = active_l2_buffer;
87 }
88 } // Step ➄: Start a new fill phase

Listing 4.3: Flush phase of Hierarchical partitioning algorithm.
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L2 buffer. If free space remains in the L2 buffer, the warp proceeds to the next fill phase
after the eviction completes. Otherwise, if the buffer is full, the warp transitions to the
L2 flush.

L2 Flush. The warp flushes the L2 buffer asynchronously to the execution of other
warps as follows. In Step ➂, the warp first swaps the full buffer with an empty buffer
from a spare buffer pool. The swap is non-blocking, as the spare pool contains one spare
buffer per warp (i.e., double-buffering). Then, the warp releases its lock on the buffer in
Step ➃. This allows other warps to fill the fresh buffer in parallel to the flush. Thus,
the next two steps occur asynchronously to the main control flow. In Step , the warp
flushes the full buffer’s contents to CPU memory, and inserts the emptied buffer into the
spare pool in Step . Finally, the warp proceeds to a new fill phase (➄).

Design Discussion. A key aspect of Hierarchical is that L2 buffers are flushed
asynchronously. This shortens the critical section, as we move the high-latency writes to
CPU memory outside of the lock. Crucially, releasing only the L1 buffer is not enough.
Instead, the L2 buffer must also be released via double-buffering. Inside the critical
section, the buffer swap consists of a pointer update followed by a scratchpad memory
fence and has a low overhead.

Overall, our Hierarchical algorithm enables us to efficiently partition large, out-of-core
data in CPU memory with a high fanout.

4.4 Scaling the State of a GPU Join

Join algorithms are all limited by the GPU memory capacity and the interconnect
bandwidth. For example, no-partitioning joins have poor data locality when the hash
table spills to CPU memory, whereas partitioned joins are bandwidth-intensive due to
their multiple data passes. The challenge is to achieve good data locality while at the
same time reducing interconnect transfers.

In this section, we introduce our Triton join algorithm, which is based on the hybrid
hash join [124] and aims to balance these two constraints. We optimize our Triton join
for GPUs by performing multi-pass radix partitioning [267] (Section 4.4.1), overlapping
transfer and compute (Section 4.4.2), and a new caching scheme for in-memory data
(Section 4.4.3). By using the GPU to partition data with our Hierarchical algorithm
and caching a working set in GPU memory, the Triton join puts into practice our
GPU-partitioned join strategy that we describe in Section 4.2.3.
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Figure 4.9: The Triton join is based on a parallel radix-parti-
tioned hash join with three stages.

4.4.1 The Triton Join Algorithm

The Triton join algorithm joins an inner relation 𝑅 and an outer relation 𝑆 using an
equality predicate (i.e., an equi-join). We define the cardinality of 𝑅 to be smaller or
equal to the cardinality of 𝑆 . We explicitly make no assumptions about the data volume
|𝑅 | and |𝑆 |, apart from that the system has enough total memory capacity to store both
relations; either relation may be smaller or larger than the GPU memory capacity 𝐶.

We illustrate our Triton join algorithm in Figure 4.9. The algorithm consists of three
stages:

1st Pass. The first pass radix-partitions 𝑅 and 𝑆 by the lower 𝐵1 bits of the hashed
join key. We choose 𝐵1 such that two corresponding partition pairs of 𝑅 and 𝑆 fit into,
e.g., half of the GPU memory, i.e., |𝑅𝑖 | + |𝑆𝑖 | + |𝑅 𝑗 | + |𝑆 𝑗 | < 𝐶

2 . For example, 1 TiB of data
requires 𝐵1 = 9 radix bits to store each partition into a 2 GiB memory buffer. Two pairs, 𝑖
and 𝑗 , are necessary to pipeline the next algorithm stages. The first partitioning pass
uses only a part of the GPU memory’s capacity, e.g., 𝐶

2 to leave space for the results of
the 2nd partitioning pass. The partitioning is executed in parallel on the GPU. At the
end of this stage, all threads wait at a barrier before the join continues to the second
partitioning pass.

2nd Pass. The second pass partitions each 𝑅𝑖 and 𝑆𝑖 partition by their next higher
radix bits. Our choice of 𝐵2 ensures that the resulting 𝑅𝑖𝑝 partitions fit into the scratchpad
memory. For example, a 2 GiB partition requires 𝐵2 = 15 radix bits, given a 64 KiB
scratchpad. Optionally, the second pass processes only a subset of 𝐵2, and a third pass
handles the remainder. The second pass reads data from CPU memory and writes its
results to GPU memory. Thus, the third pass and the join phase operate within GPU
memory.

Join 𝑅 and 𝑆 . The join phase processes each 𝑅𝑖𝑝 and 𝑆𝑖𝑝 pair together. The join first
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Figure 4.10: In the Triton join, the 2nd partitioning pass and
the join are overlapped to optimize interconnect utilization.

builds a hash table in scratchpad memory with 𝑅𝑖𝑝 . Then, the join probes the hash table
with 𝑆𝑖𝑝 . The join result is written to CPU memory, as, in the general case, the results
are larger than the GPU memory capacity. The join requires only a single data pass to
materialize results by using a linear allocator [146]. Alternatively, each thread aggregates
values inside a register, and the total result of all threads is computed by, e.g., an atomic
addition.

4.4.2 Overlapping Transfer and Compute

Pipeline parallelism is an integral part of our Triton join, as pipelining hides the data
transfer time. In the partitioning stages, the GPU pulls data from pageable CPU memory
on-demand using the cache-coherence [261]. This mechanism enables the hardware
to transfer data implicitly and in parallel to computations. However, the Triton join
requires multiple kernels to overlap with the data transfer (i.e., the second partitioning
pass and the join). Multiple kernels can be overlapped with explicit transfers (e.g.,
cudaMemcpyAsync), but this would require pinned memory. Instead, we devise a new
solution based on concurrent kernel execution [14, 293].

Concurrent kernel execution enables task parallelism on GPUs by running kernels
on different SMs, and serves to increase GPU resource utilization [323]. In our Triton
join, we configure each pipeline stage to occupy half of the available SMs and schedule
the stages on multiple CUDA streams as shown in Figure 4.10. The GPU then executes
the kernels in parallel. Thus, the transfer in the partitioning stage overlaps with the
computation in the join stage.

4.4.3 Caching theWorking Set in GPU Memory

We transform the partitioned hash join into a hybrid hash join by caching part of the
state in GPU memory. Caching state reduces data transfers for small data sets, while
providing robustness against performance cliffs when scaling the data size. However,
achieving these benefits requires us to consider how caching impacts transfers.
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Figure 4.11: State is cached in GPU memory pages that are
interleaved with CPU memory pages into a contiguous array.

The Triton join keeps the interconnect busy by distributing the cache space evenly
over the intermediate state. We implement the cache by allocating pages that are
physically in GPU and CPU memory, and then mapping these pages into a contiguous
array in virtual memory, which we illustrate in Figure 4.11. The pages are interleaved in
intervals in proportion to the physical allocation sizes, e.g., one GPU page after every
two CPU pages. During execution, the GPU accesses multiple pages in parallel, and
consistently utilizes the interconnect due to the evenly spaced CPU memory pages.

This is different than the standard hybrid hash join [124], which only caches the hash
table of the first partition𝑅0. After partitioning the data, the hybrid hash join directly joins
the partitions, e.g., 𝑅0 ⋈︁ 𝑆0. In contrast, the Triton join performs multiple partitioning
passes. Hypothetically, if the Triton join were to cache 𝑅0 and 𝑆0 to speed up the second
partitioning pass, the interconnect would be idle while the GPU partitions and joins
𝑅0 and 𝑆0 in GPU memory. Consequently, caching would reduce the transfer-compute
overlap and leave performance on the table.

4.5 Evaluation

In this section, we evaluate how well our Triton join scales to large data volumes. We
describe our experiment setup and configuration in Section 4.5.1, and then present our
results in Section 4.5.2.

4.5.1 Setup and Configuration

We first detail our evaluation environment and methodology. Next, we give an overview
of the data sets used in our evaluation. Finally, we outline our experiments.

Environment. We conduct our measurements on an IBM AC922 Power System
8335-GTH. The system consists of two IBM POWER9 (“Monza”) CPUs and two Nvidia
Tesla V100-SXM2 (“Volta”) GPUs. Each GPU is connected to one CPU via NVLink 2.0.
For PCI-e 3.0 measurements, we use an Nvidia V100-PCIE GPU. Each CPU has 16 cores
clocked at 3.8 GHz, that support 4-way SMT and 128-bit VSX SIMD instructions. Each
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GPU consists of 80 SMs running at 1.53 GHz. The system contains 128 GiB of CPU
memory per socket, and each GPU has 16 GiB of GPU memory. The machine runs
Ubuntu 18.04 with Linux 5.0.0-25. Our experiments are implemented in C++ and CUDA.
We compile our code with GCC 8.4.0 and CUDA 10.2 with the flags: “-O3 -mcpu=native
-mtune=native”.

Methodology. We measure the join throughput in billions of tuples per second
(G tuples/s). As in recent works [261, 367, 385], we define the join throughput as the total
input cardinality divided by the total runtime (i.e., |𝑅 |+ |𝑆 |

runtime ). We report the mean and
standard error over 10 runs for all experiments. We note that our measurements are
stable with a standard error below 5%.

Workloads. We specify our default workload similar to related works [48, 226, 261,
385]. We use two base relations, R and S, each consisting of 16-byte <key,record-id>
tuples. We scale their cardinalities to |𝑅 | = |𝑆 | ∈ {128, 512, 2048} million tuples (M tuples)
each. R contains primary keys, and S references the primary keys of R. We randomly
shuffle the unique primary keys, generate the foreign keys following a uniform random
distribution in the range 𝑠 ∈ [1, |𝑅 |], and fill the record-ids with random values. We
store the relations in a column-oriented layout. In summary, we define in-GPU and
out-of-core scenarios with up to 61 GiB of data.

Settings. Unless mentioned otherwise, our measurements are configured with the
following settings and optimizations. All base relations are stored in pageable CPU
memory (i.e., non-pinned). We allocate memory as 2 MiB huge pages [48, 367, 368]
on the NUMA node closest to the GPU, and preallocate the pages at boot time [285]
to avoid page fragmentation. The GPU directly accesses CPU memory using cache-
coherence [261]. We use our Hierarchical partitioning algorithm with 6–10 radix bits for
the first pass, and our Shared variant with 9 radix bits for the second pass. For the Triton
and radix joins, we use a bucket-chaining hash table [170, 385] with 2048 entries [385].
On the GPU, we store the hash table in the scratchpad cache. For the no-partitioning
join, we configure a linear probing scheme with a 50% load factor [219, 352, 357]. In both
hashing schemes we use a multiply-shift hash function [127, 352].

Baselines. We measure a radix-partitioned, multi-core hash join implementation [53].
We port all optimizations used by Balkesen et al. [48] to the POWER ISA as described
below (our own implementation adds SIMD loads). We extend the code with an array
join [367] (i.e., perfect hashing), and partition with 12–14 radix bits in a single pass.

We optimize our CPU implementation (shown in Section 4.2) for the POWER9
architecture. We tune memory reads with SIMD instructions and by disabling stride-N
prefetching (DSCR = 0) [188], as we observed that stride-N prefetching reduces sequential
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bandwidth. Note that sequential prefetching is enabled. We optimize the SWWC flush
using SIMD stores to write 128-byte cachelines. We note that in contrast to x86_64, the
POWER ISA does not support non-temporal stores that bypass the cache [128, 188].
We tested streaming store hints (dcbtst and dcbz), but these provided no speedup. In
our prefix sum, each SIMD lane builds a private histogram to avoid read-after-write
hazards [179]. We tune the SMT setting (16, 32, or 64 threads) for each data point.

Experiments. We conduct fourteen experiments. First, we evaluate how our Triton
join speeds-up join throughput compared to a GPU no-partitioning join and a CPU
radix-partitioned join. We then explain why the Triton join outperforms no-partitioning
joins. After that, we profile the Triton join to account where time goes. As the partitioning
phase has a large performance impact, we show how it is affected by the processor type
(CPU vs. GPU). We analyze the GPU partitioning algorithms in-depth on out-of-core
data, and evaluate the second partitioning pass in GPU memory. Based on these results,
we tune the partitioning fanouts of the Triton join. Next, we measure the speedup gained
by caching, and explore computing the prefix sum on the CPU vs. the GPU. Furthermore,
we analyze build-to-probe ratios and wide tuples. Finally, we investigate how future
hardware might affect the Triton join.

4.5.2 Experiments

We conduct our experimental evaluation in this section.

Scaling the Triton Join vs. Baselines

In Figure 4.12, we scale the base relations from 128–2048 million tuples per relation.
The relations have the same size, and consist of 16-byte tuples. The total data size is
thus 3.8–61 GiB, and is up to 122 GiB large when considering the partitioned copy. This
is close to the CPU memory capacity of one 128 GiB NUMA node. We compare the
throughput of the Triton join to state-of-the-art join strategies on a CPU and a GPU. In
addition to the IBM POWER9, we include a Intel Xeon Gold 6126 (“Skylake-SP”) with 12
cores at 2.6 GHz. Note that Figure 4.1 is a simplified version of this experiment with
only perfect hashing. Next, we compare the baselines.

CPU Radix Join. The performance of the POWER9 baseline declines by 22% from 1.1
G tuples/s to 0.9 G tuples/s, due to increasing the fanout from 212 to 214. Perfect hashing
is 6–16% faster than bucket chaining. In contrast, the Xeon is slower at 1.0–0.6 G tuples/s.
Above 1408 M tuples, the SWWC buffers exceed the Xeon’s 1.25 MiB L3 cache capacity
(the POWER9 has 5 MiB/core). Thus, the Xeon switches to two-pass partitioning and a
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Figure 4.12: Scaling the build-side relation.

218 fanout.
GPU No-partitioning Join. The GPU baseline using perfect hashing achieves 2.5

G tuples/s up to a relation size of 640 M tuples. For larger relations, the throughput
decreases to 0.5 G tuples/s for sizes above 1024 M tuples. This performance degradation
occurs due to exceeding the GPU memory capacity. In contrast, linear probing reaches
only 1.1 M tuples/s for large inputs due to exceeding the GPU TLB range, which we
analyze in detail in Section 4.5.2. As a result, perfect hashing is up to 400× faster than
linear probing.

GPU Triton Join. The Triton join performs within 85% of the GPU baseline for
relations up to 896 M tuples. Then, the Triton join gracefully degrades from 2.3 to 1.7
G tuples/s. It retains 74% of its peak throughput for 2048 M tuples of data. Thus, the
Triton join is 1.9–2.6× faster than the POWER9 baseline, and up to 3.9× faster than the
GPU baseline with perfect hashing. The performance of bucket chaining remains within
0–2% of perfect hashing.

Summary. We draw three conclusions. First, a no-partitioning join does not scale
well on GPUs with fast interconnects. Second, the hashing scheme has a large impact on
the no-partitioning join, but only a small impact on the partitioned joins. Third, in all
cases, our Triton join outperforms the baselines beyond 1024 M tuples.

Why the Triton Join Outperforms No-partitioning Joins

To better understand the join performance, we analyze the interconnect utilization and
GPU TLB misses using hardware performance counters in Figure 4.13. We calculate the
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Figure 4.13: Interconnect usage of join algorithms.

utilization as the measured bandwidth divided by the theoretical limit. We measure
the bandwidth of CPU to GPU transfers including protocol overhead, for which the
theoretical limit is 75 GB/s. We use a GPU prefix sum to obtain a full GPU profile. In
addition, we count GPU TLB misses as the number of address translation requests
received by the CPU’s IOMMU [64, 189]. Note that GPU vendors do not expose GPU
TLB hardware performance counters [28, 301, 389].

Interconnect Utilization. With an increasing data size, the Triton join caches a smaller
proportion of the data in GPU memory. This increases interconnect utilization, as the
join phase reads data from CPU memory more often. Closer inspection shows that the
prefix sum and partitioning phases are at 90–100% utilization, but the join phase varies
between 9–78%. In contrast, the no-partitioning join utilizes the interconnect at up to
63.6% for hash tables in GPU memory, but drops to 25.2% for out-of-core hash tables.
With linear probing, utilization drops further to 0.4%.

GPU TLB Misses. GPU TLB misses are the main reason why the no-partitioning
join with linear probing has a low interconnect utilization. The 50% load factor doubles
the hash table size of linear probing compared to perfect hashing (64 GiB vs. 30.5 GiB
for 2048 M tuples), and is rounded up to a power of two. Thus, the hash table exceeds
the GPU TLB range of 32 GiB by 2× (see Section 4.2.4). As a result, the GPU issues a
translation request to the IOMMU on nearly every memory access, i.e., 5.3 requests per
tuple. In contrast, the Triton join issues an IOMMU request once per 105 tuples.

Overall, partitioning is effective at reducing TLB misses. Spilling leads to intensive
interconnect utilization. However, caching and interconnect utilization are challenging
to balance.
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Figure 4.14: Time breakdown of the Triton join.

Time Accounting

As not all phases of the Triton join are interconnect bound, we account where time goes.
We break down the execution time per kernel in Figure 4.14, and profile each kernel to
find out whether the GPU is executing (instruction issued) or stalling (everything else)
in Figure 4.15. We configure a GPU prefix sum instead of a CPU prefix sum to obtain a
full GPU profile.

Time Breakdown. Most of the time is spent in the first partitioning pass, which
always reads data from CPU memory. This partitioning pass takes 43.8–47.2% of the
total time, and the first prefix sum takes 18.9–23.4%. In contrast, the join phase reads
data from GPU memory unless data is spilled to CPU memory. In our implementation,
the join phase consists of four kernels: a prefix sum and a partitioner for the second pass,
a join task scheduler, and the join. Spilling increases the time spent in the second prefix
sum, as it copies the data into GPU memory to avoid redundant transfers by subsequent
kernels.

Profiling. Both prefix sum passes and the first partitioning pass are mostly intercon-
nect bound due to memory dependencies. In contrast, the second partitioning pass is
mostly compute bound due to issuing instructions, as it runs in GPU memory. Only
first partitioning pass and second prefix sum pass change with the workload, due to
spilling and reloading data. Counterintuitively, large data sizes reduce memory stalls
for partitioning, as high fanouts cause additional work.

Our take away is that interconnect bandwidth limits the partitioning phase, but
compute power limits the join phase. As bandwidth outweighs computation, we focus
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Figure 4.15: Microarchitectural profiling of the Triton join.
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Figure 4.16: Partitioning data using the CPU vs. the GPU.

our optimization efforts on the interconnect in the following sections.

CPU-Partitioned vs. GPU-Partitioned Join

We evaluate the impact of the processor used for partitioning on the end-to-end join in
Figure 4.16(a). Following that, we investigate the partitioning phase in Figure 4.16(b).
For a fair comparison, we reimplement the strategy of Sioulas et al. [385] and optimize it
for the POWER9 and NVLink 2.0 (see Section 4.5.1). The join overlaps the transfer and
second partitioning pass over 𝑅 with the first pass over 𝑆 , and caches its working set
in GPU memory. We compare this CPU-partitioned radix join to our Triton join, that is
GPU-partitioned. We run the default workloads, and plot the throughput in G tuples/s
for the join and GiB/s for the partitioning.

End-to-End Join. The CPU-partitioned join reaches a throughput of 1.3–1.8 G tuples/s.
The 128 M tuple workload has a 38% higher throughput than the 2048 M workload, due
to caching the working set. In contrast, the Triton join achieves a 1.2–1.3× speedup.

Partitioning. A closer inspection reveals why the Triton join is faster. First, the
GPU partitions data 1.5–1.7× faster than the CPU. Second, the Triton join caches
intermediate results in GPU memory, leading to a lower transfer volume. In contrast,
the CPU-partitioned join first has to write results to CPU memory and then read them
again for the transfer to the GPU, which consumes memory bandwidth. However, the
CPU-partitioned join overlaps the partitioning of the outer relation and the transfer of
the inner relation. Thus, its join pipeline is 3–13% faster than that of the Triton join.

Overall, our Triton join is faster than the CPU-partitioned join due to partitioning
data efficiently on the GPU, and the caching optimizations that this design enables.
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Figure 4.17: Effect of partitioning algorithms on a radix join.

Partitioning Algorithms

In Figure 4.17, we evaluate the impact of the partitioning algorithm on the join. We
compare our Shared and Hierarchical to the Linear and Standard radix partitioning
algorithms. We vary the algorithm used in the first pass and measure the end-to-end join
throughput. We scale the base relations from 128 to 2048 M tuples. We disable caching
to eliminate side-effects.

Observations. Our Shared algorithm achieves a throughput of 1.5–1.6 G tuples/s
up to a size of 1280 M tuples. At this threshold, the flush granularity drops below
128 bytes due to the high fanout. For larger relation sizes, the throughput of Shared
reduces to 0.9–1 G tuples/s. In contrast, our Hierarchical variant performs between
1.4–1.5 G tuples/s over the whole range, and degrades gracefully. Thus, Hierarchical
achieves a speedup of 1.1–1.9× and 3.6–4× over the Linear and Standard algorithms,
respectively.

Overall, the choice of the partitioning algorithm is important for scaling a GPU join.
Most notably, our Hierarchical algorithm improves the scaling to large data sizes.

Why Hierarchical Outperforms the State-of-the-Art

To reveal the superior the partitioning throughput, we investigate all partitioning
algorithms with hardware performance counters. We use 60 GiB of data, which are
sufficiently large to incur TLB misses (see Section 4.2.4). The GPU reads 16-byte tuples
from CPU memory, and writes the results back to CPU memory.

Throughput. In Figure 4.18(a), we measure the partitioning throughput in isolation
while increasing the fanout. We highlight three aspects. First, the Linear algorithm never
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Figure 4.18: Profiling state-of-the-art partitioning algorithms.
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achieves the bidirectional interconnect bandwidth of 55.9 GiB/s. It reaches 50.7 GiB/s for
one partition (i.e., a memcopy), but then drops to 42.4 GiB/s for a fanout of 2. Second,
Shared partitions at 54 GiB/s, but does not scale beyond a fanout of 64. In contrast, our
Hierarchical algorithm achieves 38.3 GiB/s even at a fanout of 2048.

Write Coalescing. To reveal the reasons for the performance, we begin by recording
the tuples per memory transaction in Figure 4.18(b). We find that Linear only partially
coalesces writes. The reason is that sorting tuples by partition usually does not result
in batches of exactly 128 bytes. High fanouts increase this effect as the tuples cached
per partition decrease. In contrast, both of our algorithms perfectly coalesce writes by
design.

NVLink Overhead. Ineffective coalescing leads to the high physical transfer volumes
in Figure 4.18(c). This overhead results from the interconnect packet header attached to
each payload, and is higher for small payload sizes. In the case of Linear, interconnect
overhead accounts for up to 156% of the transfer volume. In contrast, our Hierarchical
algorithm remains below 43%.

GPU TLB Misses. In Figure 4.18(d), we unmask the performance barrier at a fanout
of 64 by measuring the IOMMU requests. Going from 64 to 128 partitions causes the TLB
miss rate of Shared to increase by 33×, i.e., a miss on every second flush. In contrast, at a
fanout of 2048 Hierarchical achieves a 1436×, 100×, and 771× lower miss rate compared
to Standard, Linear, and Shared, respectively.

Compute Utilization. We inspect if computation limits throughput by reporting
the “percentage of issue slots that issued at least one instruction” [301] in Figure 4.18(e).
Typically, utilization remains below 5%. Only Hierarchical utilizes up to 43% of the GPU
with high fanouts. The trend starts when the buffer size drops to 16 tuples at a fanout of
256, and flushing no longer occupies a full warp.

GPU Stall Reason. In Figure 4.18(f), we reveal why compute utilization is low.
Shared and Hierarchical stall on memory dependencies 65–90% of the time. In contrast,
Linear additionally stalls on synchronization and pipeline busy [301]. TLB misses
manifest themselves as instruction latency, i.e., execution dependency and pipeline busy
stalls. For Standard, the stall counters overflow for fanouts of 512–2048 due to its runtime
of 10 minutes [387].

We conclude that the data access pattern and TLB miss tolerance of our Shared and
Hierarchical algorithms are the main reasons they outperform the Standard and Linear
approaches.
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Figure 4.19: Second radix partitioning pass in GPU memory.

Second Radix Partitioning Pass

The second partitioning pass of the Triton join writes its partitions to GPU memory.
Therefore, in Figure 4.19, we evaluate the throughput of state-of-the-art radix partitioning
algorithms when the input and output data reside in GPU memory. We partition
470 M tuples (7 GiB) and plot the memcopy throughput as the GPU memory baseline.

Shared Algorithm. Our Shared algorithm outperforms Linear by 1.04–2.1× for
fanouts above four. The reason is that the perfect coalescing of the Shared algorithm
leads to a higher write bandwidth also in GPU memory. However, small fanouts perform
poorly as threads must frequently wait until the software write-combine buffer is flushed.
This issue could be resolved by asynchronously flushing the buffers similarly to the
Hierarchical algorithm, at the cost of occupying more space in scratchpad memory.
However, this solution would reduce performance for high fanouts.

Hierarchical Algorithm. In contrast, our Hierarchical algorithm reaches less than
60% of the Shared algorithm’s throughput. This results from the two-level software
write-combining performed by Hierarchical, which incurs extra accesses to GPU memory.

Overall, we utilize our Shared algorithm in the Triton join’s second partitioning pass
due to its high in-GPU performance.

Which fanouts to choose?

We configure the Triton join with two radix partitioning passes, which makes the join
challenging to tune. In Figure 4.20, we evaluate which combination of fanouts achieves
the highest join throughput. We measure the three default workloads, with all fanout
combinations for which the resulting hash table fits into the GPU scratchpad cache. We
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Figure 4.20: Tuning the partitioning fanouts for the Triton join.

present the measurements as a heat map. On the X- and Y-axis, we scale the fanouts
of the first and second partitioning passes, respectively. In the heat map, we show the
join throughput as a percentage of the maximum value. Bright colors map to a high
throughput, and dark colors to a low throughput.

Observations. The “hot” diagonal of each heat map represents the Pareto frontier,
on which the optimal parameter combination typically lies. Fanouts above the frontier
over-partition the data, and fanouts below the frontier under-partition the data. We note
that the maximum throughput for all workloads is on the Pareto frontier. Furthermore,
the optimal fanout for second partitioning pass is 512. However, the best fanout for
the first pass varies between 64–1024. This variation is due to the constant size of the
scratchpad cache, into which the hash table must fit. Thus, we deduce that the optimal
fanout depends on the size of 𝑅.

In Equation 4.1, we calculate the optimal fanout for the first partitioning pass based
on the size of the inner relation 𝑅:

fanout1st ≔ 2 ⌈log2 (size(𝑅)/size(cache)) ⌉−log2 (fanout2nd) (4.1)

In summary, our measurements suggest that the Triton join is more sensitive to the
first partitioning pass than the second pass. Therefore, we simplify tuning by providing
a closed-form equation to calculate the best fanout for the first pass.
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Figure 4.21: Scaling the GPU memory cache size.

Caching theWorking Set in GPU Memory

We explore the effect of caching on the throughput of the no-partitioning join and the
Triton join in Figure 4.21. We scale the cache size in GPU memory from 0 to 14.9 GiB. For
the no-partitioning join, we cache part of the hash table [261]. We note that the Triton
join with no cache is effectively a two-pass radix join, and that a part of the GPU memory
is required for the join pipeline.

GPU No-Partitioning Join. Caching the entire hash table instead of not caching
anything increases throughput by 4.6–4.8× for the 128 M and 512 M workloads using
perfect hashing. In contrast, caching has no effect on the 2048 M workload. The reason
is the high cache miss rate of 50%. A miss rate of only 4% reduces the gain to 1.8× for
512 M with linear probing. In contrast, for 2048 M with linear probing the reason is that
GPU TLB misses slow down the join (see Section 4.5.2).

GPU Triton Join. In contrast, the 128 M and 512 M workloads improve performance
by 1.4×, and the 2048 M workload by 1.1×. However, the 128 M workload slows down
by 1.5% when the whole working set is cached, instead of only 79% of the working set.
This is because the GPU memory and interconnect together provide more bandwidth
than GPU memory alone [6, 339].

Our take-away is that the Triton join robustly scales with the cache size, and avoids
sharp performance cliffs caused by the TLB range and the GPU memory capacity.
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Figure 4.22: Prefix sum on the CPU vs. on the GPU.

CPU vs. GPU Prefix Sum

We determine which processor computes the prefix sum faster. We first assess the effect
of the prefix sum on the end-to-end join (Figure 4.22(a)), and then measure the prefix
sum throughput achieved by the CPU and GPU (Figure 4.22(b)). We run the experiment
using our Triton join on the default working sets with 128, 512, and 2048 M tuples. We
show the prefix sum throughput in GiB/s to enable a comparison with the memory
bandwidth. We highlight that the prefix sum reads a single column per relation, due to
the columnar layout.

Triton Join. We observe that when using the CPU, the Triton join achieves a
throughput of 2.2 G tuples/s for the 128 M and 512 M workloads, and 1.6 G tuples/s for
the 2048 M workload. These results are 1.1× faster than when computing the prefix sum
on the GPU.

Prefix Sum. The CPU achieves up to 129.6 GiB/s, and is able to nearly saturate the
CPU memory bandwidth. For the 2048 M tuples workload, the throughput decreases to
96 GiB/s. In contrast, the throughput of the GPU is constant at 63 GiB/s. The reason is that
reads are unidirectional transfers, and thus the GPU is constrained by the interconnect
bandwidth.

Overall, the CPU is able to sequentially scan data faster than the GPU, and thus
computes the prefix sum 1.6–2.2× faster. However, the prefix sum has a small impact on
the overall join throughput.
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Figure 4.23: Varying build-to-probe ratios with the Triton join.

Build-to-probe Ratios

In Figure 4.23, we measure the throughput of the Triton join for different build-to-probe
ratios. For each workload, we scale the ratio from 1:1 to 1:32 while keeping the data
constant at 61 GiB. For example, for the 2048 M workload 1:1 means 2048:2048 M tuples,
and 1:32 means 124:3972 M tuples.

Observations. The no-partitioning join is subject to two effects. First, the GPU
memory capacity causes an abrupt performance cliff. The extreme case is linear probing,
for which a 1:32 ratio is 3414× faster than 1:1 in the 2048 M workload. Second, reducing
the build size within GPU memory causes a 60% speedup. Dissecting the perfect hashing
variant shows that the probe throughput is 4.3 G tuples/s, whereas the build throughput
is only 1.8 G tuples/s. In a deeper investigation, we find that random GPU memory
reads are 3.2–6× faster than writes. In contrast, the throughput of the Triton join remains
stable between 1.66-1.88 G tuples/s. This increase results from reducing the fanout from
1024 to 64 partitions, which increases partitioning throughput.

We conclude that the Triton join is insensitive to the build-to-probe ratio, due to
partitioning the large outer relation. Thus, a no-partitioning join should be preferred for
high ratios.

TupleWidth

The relation size is determined both by the number and width of tuples. In Figure 4.24,
we investigate how materializing wide tuples affects the Triton join. Instead of reading
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Figure 4.24: Scaling the number of payload attributes.

two attributes, we partition only the join key and generate row IDs on-the-fly in the first
pass. Thus, the join results in a join index, with which we materialize and aggregate the
out-of-core, 8-byte payload attributes of the outer relation.

Observations. At 2 G tuples/s and 1.5 G tuples/s, constructing a join index (i.e., no
payload) achieves a similar throughput as our default setup, which early-materializes
one payload attribute. In contrast, late materialization incurs a random CPU memory
access per attribute, which causes performance to degrade to 86–88 M tuples/s for 16
payloads. The 2048 M workload stops at two payloads due to reaching the CPU memory
capacity.

In conclusion, partitioning leads to expensive random accesses during late material-
ization. Our results indicate that materializing wide, out-of-core tuples requires further
investigation.

Compute Power Scaling

We explore how future hardware might affect the Triton join by scaling number of
streaming multiprocessors in Figure 4.25. We measure the throughput as a percentage of
the maximum, and explain the scaling behavior by examining where the join spends
time in the 512 M tuples workload.

Workloads. We observe that 28 SMs suffice to achieve 75% of the peak throughput
for the 128 M and 512 M workloads. The 95% mark is passed for all our workloads with
55 SMs.

Time Breakdown. The Triton join scales quickly at first, as the first and the second
partitioning passes are compute bound below 25 SMs. With more than 25 SMs, profiling
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Figure 4.25: Compute power required for high throughput.

shows that the first pass becomes interconnect bound and stops scaling. In contrast,
the second pass remains compute bound and continues to scale, but with diminishing
returns. As a result, the overall scaling levels out.

We conclude that the Triton join is interconnect bound. A faster interconnect would
increase join throughput, whereas a faster GPU would not yield significant gains.

4.5.3 Discussion

In this chapter, we have investigated how fast interconnects can resolve the memory
capacity limitation to scale the GPU join state, and have gained the following key insights.

GPUs with fast interconnects scale to a large join state. Fast interconnects provide
sufficient bandwidth to spill large state to CPU memory. A 2× speedup over a strong
CPU baseline is possible even when the state size exceeds the GPU memory capacity.

GPUs robustly spill state to CPU memory. We learned that partitioning and
caching can be combined to gracefully degrade throughput. Thus, we are able to avoid
performance cliffs caused by the TLB range and the GPU memory capacity.

GPUs are able to process tasks end-to-end. Fast interconnects obviate CPU involve-
ment. For example, the CPU no longer must partition data or manage transfer pipelines.
This enables DBMSs to efficiently use heterogeneous hardware.

Interconnect-consciousness enables fast random accesses. Perfect coalescing
saturates a fast interconnect. Thus, adapting the access pattern to the interconnect makes
new use-cases possible.

Concurrent kernel execution is a versatile replacement for DMA copy engines. In
addition to overlapping computation and transfers from pageable memory, kernels are
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able to directly compute or reshape the data. Thus, concurrent kernel execution helps to
reduce GPU memory traffic and improve data access patterns.

Interconnect bandwidth is no longer the main bottleneck. In some cases, the
high interconnect bandwidth shifts the bottleneck to other resources, such as random
access bandwidth, TLB misses, and computation. Optimization becomes challenging, as
multiple constraints can simultaneously affect different parts of the program.

Summary. Fast interconnects enable GPUs to cover a broader spectrum of database
use-cases, but we require new algorithms to fully exploit the performance potential of
fast interconnects.

4.6 RelatedWork

In this section, we contrast our contributions to related work.
Scalable Co-Processing. Recent GPU-enabled DBMSs [78, 79, 102, 103, 146, 170, 176]

and machine learning frameworks [40, 264] are able to process data sets larger than
GPU memory. Our work complements these systems by scaling the operator state, thus
enabling large data sizes.

Relational and ML operators stream data from CPU memory to the GPU to transfer
data efficiently across the interconnect [213, 219, 259, 357]. In contrast to these works,
we scale operator state in addition to scaling the data size.

Join Co-Processing. Speeding up joins on co-processors has been of particular
interest for database research [170, 171, 173, 174, 213, 277, 288, 339, 420]. Recent
works investigate radix-partitioned joins on GPUs [321, 361], MICs [97, 206, 343], and
FPGAs [96, 167, 168, 240]. However, these approaches limit the join state to the co-
processor’s on-board memory, or assume a coupled architecture in which the co-processor
has direct CPU memory access. In contrast, our Triton join handles large state on a
discrete GPU.

Radix Partitioning on Co-Processors. Radix partitioning has been investigated
on GPUs, MICs, and FPGAs. Early GPU works suggest a binary divide-and-conquer
approach [363, 364], that requires a data pass per radix bit. More recently, GPUs with
atomic additions enable a single-pass approach that sorts data in scratchpad memory [361,
395]. In contrast, our Shared algorithm extends software write-combining [364] to fully
coalesce writes on GPUs.

SWWC partitioning has been ported to MICs by SIMD vectorization [344, 345, 346].
Our Shared is structurally similar to vectorized SWWC. However, in contrast to SIMD
partitioning, Shared saves cache space by sharing buffers among warps. In analogous
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terms, in our design, SMT threads share buffers in the L1 cache, in addition to SIMD
vectorization. To the best of our knowledge, no prior work considers such a design on
any processor architecture.

On FPGAs, write-combining can be implemented in hardware instead of in soft-
ware [215, 409]. However, previous studies have been limited by slow interconnects that
incur a data transfer bottleneck.

End-to-End Join Queries. Join state compression [52, 57, 149, 243], filtering [49, 163,
365] and pipelining [50, 434] the outer relation, and efficient tuple materialization [268,
345, 346, 430] have been proposed to speed-up joins. These optimizations complement
our work and remain open challenges for GPUs with fast interconnects.

Transfer Bottleneck. Previous works consider scaling operator state for joins [163, 340,
385], sorting [395], and the primitives underlying these operators [159]. However, these
works assume that PCI-e causes a transfer bottleneck. In contrast, we take advantage
of fast interconnects by proposing a new approach that eliminates CPU pre-processing
steps.

Fast Interconnects. GPUs with NVLink have been explored to speed up query
processing. Recent works investigate the data transfer bottleneck [261], lazy transfers and
scan sharing for HTAP DBMSs [349], multi-GPU joins [149, 324, 360], CSV loading [235],
and sorting [265]. FPGAs with OpenCAPI have been exploited to scale the outer relation
of a join [216] and data loading [332, 333]. In contrast, we show that by carefully
designing algorithms for fast interconnects, GPUs efficiently accelerate joins with a large
state.

4.7 Conclusion

Fast interconnects are not a silver bullet for large-scale hash joins. Our analysis of
NVLink 2.0 reveals that interconnect overhead and TLB misses reduce performance. We
propose our Triton join to overcome these challenges. Our hardware insights lead to a
GPU-partitioned join strategy based on a new GPU partitioning algorithm. Overall, our
Triton join scales to large data volumes at up to 400× faster performance by being aware
of the fast interconnect.
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Scalable Iterative Algorithms

Our goal in this chapter is to efficiently process machine learning queries on large data
sets using a GPU. We investigate k-means, a well-understood and versatile machine
learning algorithm. We find that existing approaches do not utilize the interconnect
efficiently, as these speed-up computations but neglect to optimize data transfers. In
contrast, we propose a new execution strategy for k-means which reduces repeatedly
occurring data transfer overhead. By considering transfers, we efficiently harness fast
interconnects to scale k-means on GPUs.

5.1 Introduction

k-means [256, 263] is an essential tool in the data scientist’s toolkit to find patterns in large
data sets. In particular, practitioners of data-driven sciences, such as genome analysis [177,
407, 425] and climatology [88, 112, 228] require fast k-means implementations for a
short data to knowledge time. Furthermore, many algorithms build on top of k-
means to cover new use-cases, e.g., BIRCH [428], streaming k-means [383], and deep
clustering [86, 87]. Thus, speeding up k-means enables data scientists to create new
insights by exploiting larger data sets in higher quality. Although relational databases
support k-means via SQL [178, 317], high-performance k-means requires specialized
database features [320, 369]. The ubiquitous availability of GPUs provided by cloud
computing platforms promises inexpensive and fast execution of machine learning
queries. However, to exploit the full performance of GPUs, algorithms require careful
design and tuning, as shown by previous research on accelerating relational data
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Figure 5.1: k-Means Execution Strategies.

management with GPUs [78, 79, 146, 170, 176, 219, 340, 341].
In Figure 5.1, we optimize k-means for GPUs, step by step. The Cross-Processing

strategy results from the two phases in each iteration of k-means: point assignment
and centroid update. Research over the last decade focused mostly on accelerating
these phases on CPU or GPU separately [85, 95, 139, 166, 373, 412]. In particular, they
compute the point assignment phase on the GPU and perform the centroid update on the
CPU. This split between CPU and GPU causes the cross-processing problem, because the
split requires a data exchange over the interconnect in each iteration. In contrast, some
approaches avoid the split by performing point assignment and centroid update on the
GPU [44, 252]. However, both types of approaches introduce artificial synchronization
barriers between the two phases. The barriers require these approaches to make two
passes over the data points. As large data sets cannot be stored entirely in GPU memory,
each pass incurs a data transfer. The resulting multi-pass problem decreases the throughput
up to a factor of two. Overall, current approaches do not scale to large data volumes
because they cannot efficiently fuse both phases.

In this chapter, we address both problems to exploit the processing power of modern
GPUs for running k-means on large data volumes. Our contributions are as follows:

1. We propose a novel centroid update algorithm for GPUs that solves the cross-
processing problem by eliminating artificial synchronization barriers between the
phases of k-means.

2. We introduce the Single-Pass execution strategy on GPUs to solve the multi-pass
problem by making a single pass over the data points.
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3. We show how our new k-means execution strategy scales to large data sets that
exceed the GPU memory capacity.

4. We evaluate the Multi-Pass and Single-Pass strategies against the state-of-the-
art Cross-Processing strategy on CPUs and GPUs in scenarios which are either
data-intensive or compute-intensive.

The remainder of the chapter is structured as follows. In Section 5.2, we describe
our GPU-optimized centroid update. After that, we contribute our novel Single-Pass
execution strategy in Section 5.3 and show its application for arbitrarily large data sets
in Section 5.4. In Section 5.5, we present our experimental results. Finally, we review
related work in Section 5.6 and conclude the chapter in Section 5.7.

5.2 Efficient Centroid Update

In this section, we discuss different strategies to compute the centroid update efficiently
on GPUs. Our efficient GPU implementation allows us to perform k-means completely
on the GPU. This eliminates the transfer of data point labels over PCI-e, which Cross-
Processing inherently requires. In general, the centroid update consists of two parts: First,
computing the Feature Sum and second, the Mass Sum. We discuss these individually
in Sections 5.2.1 and 5.2.2, as they require different approaches. The new centroids are
obtained by dividing feature sum vectors by the mass sum vector.

5.2.1 Feature Sum

During the Feature Sum calculation, k-means adds up the individual feature values
of all points that belong to the same cluster and stores the result in a vector of feature
sums. As a result, Feature Sum is logically equivalent to a SQL group-by aggregation
query, where we group by the labels and compute a sum for each feature. We discuss
the relation to group-by in Section 5.6.

Cluster Merge. We now describe the design of Cluster Merge, depicted in Figure 5.2.
The points are stored in column major format, such that each feature of a point is stored
in a separate array. Together, the arrays represent a matrix.

In Cluster Merge, each thread processes a point (i.e., all features, see ➀ in Figure 5.2)
and aggregates the point in a private clusters × features matrix (see ➁ in Figure 5.2) using
the point’s label as the cluster index. In a final step, all threads merge their partial results
with a reduction [169] to the final feature sum vector (see ➂ in Figure 5.2).
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Figure 5.2: Feature Sum strategy: Cluster Merge. Each color
represents a single thread processing one point at a time.

Figure 5.3: Feature Sum strategy: Partitioned Features. Each
color represents a thread block processing multiple points at a
time.

Every thread allocates memory to store a private replica of the clusters × features
matrix (i.e., the working set). This has the benefit that no atomic writes or locks slow
down performance when scaling the number of threads.

However, the thread-private matrix requires a large amount of cache space per thread.
Each thread requires 4 × 𝑘 × 𝑑 bytes of additional cache space to store its working set,
assuming a four-byte floating-point datatype. Thus, we can either scale the number of
threads and face cache thrashing, or we use too few threads and, as a result, underutilize
the GPU SMs and memory controllers.

Partitioned Features. Our Partitioned Features strategy, shown in Figure 5.3, optimizes
Feature Sum for the hardware architecture of GPUs. The key idea of Partitioned Features
is to exchange data through thread block synchronization. Within a thread block, we
vertically partition a batch of data points, such that each thread is responsible for a
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particular feature instead of a complete data point. Thus, each thread of a thread block
processes a different feature of the same data point. Depending on the number of
features, a thread block processes multiple points at once. This allows us to avoid cache
thrashing by reducing the working set of each thread to 4×𝑘 bytes (compared to 4×𝑘 ×𝑑
for Cluster Merge). This approach requires a barrier within the thread block, which is
typically fast on GPUs.

Advantages. The main advantages over Cluster Merge are as follows. First,
Partitioned Features shares a local clusters × features matrix per thread block (see ➁ in
Figure 5.3). Each thread block consists of 𝑡 threads, where each thread stores a vector of
𝑘 sums, i.e., one sum per centroid. In total, each matrix has a size of 𝑘 × 𝑡 elements. Thus,
as each thread writes exclusively to its own vector within the shared matrix, no atomic
writes are needed.

Second, each thread of the same thread block reads one feature of the same point and
adds it to the feature sum of the cluster indicated by the label. The whole thread block
processes a batch of data points (see ➀ in Figure 5.3). Thus, a single matrix per thread
block is sufficient to store the intermediate result, and the GPU can coalesce memory
accesses to the data points.

As in Cluster Merge, each point’s label is read from GPU memory only once. However,
sharing the label among threads introduces a barrier within the thread block. In a final
step, all thread blocks reduce their partial results to obtain the final feature sum matrix
(see ➂ in Figure 5.3).

Edge Cases. Depending on the data set, the number of features 𝑑 can be less than or
greater than the thread block size (i.e., 𝑑 < 𝑡 or 𝑑 > 𝑡). We handle these cases by either
processing multiple points in the same thread block (𝑑 < 𝑡 , depicted in Figure 5.3), or by
partitioning features of the same point over multiple thread blocks (𝑑 > 𝑡).

Summary. Overall, our Partitioned Features strategy achieves better cache-efficiency
than Cluster Merge through thread block synchronization. Thus, Partitioned Features
runs with a higher number of threads on GPUs compared to Cluster Merge, which
results in more efficient GPU execution.

5.2.2 Mass Sum

Mass Sum is the second part of the centroid update. It calculates a histogram which counts
the number of points in every cluster. In contrast to a general histogram computation,
Mass Sum uses the point label as an index to directly access a bucket, instead of first
calculating the bucket’s index. Three differences distinguish Mass Sum from Feature
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Figure 5.4: Mass Sum strategy: Global Atomic. Threads
compute a global histogram.

Figure 5.5: Mass Sum strategy: Partitioned Local. Each thread
block computes a local histogram.

Sum: (a) it has only one dimension, (b) the labels are counted, thus no point data is
read, and (c) it increments integers instead of adding floating point numbers. The last
property is relevant because GPUs are faster at atomic integer increments than atomic
floating point additions.

Depending on 𝑘 , different approaches are needed to balance the synchronization cost
between threads and the merging cost for combining intermediate results. Thus, we
consider four strategies for Mass Sum: Global Atomic, Partitioned Global, Partitioned
Local, and Partitioned Private.

Global Atomic. The most simple way to compute a histogram on a GPU is to create
one global histogram that is updated by all threads, as we illustrate in Figure 5.4. We
refer to this approach as Global Atomic, because all threads synchronize globally on
each bucket using atomics to ensure a correct result. Global Atomic is easy to implement
and performs well for a large number of clusters (𝑘 > 1000). However, it causes heavy
contention for a small number of clusters. For these cases, we need a different strategy.

107



Chapter 5. Scalable Iterative Algorithms

Figure 5.6: Mass Sum strategy: Partitioned Private. Each
thread in a thread block writes into private histogram buckets.

Partitioned Global and Partitioned Local. We provide each thread block a dedicated
histogram stored in GPU memory to reduce contention between threads. Therefore,
threads in different thread blocks do not need to synchronize, which significantly
improves performance. This comes at the cost of merging the individual histograms at
the end of the computation by a parallel reduction step. Hardware support for atomic
additions in scratchpad memory [298] enables a variant that stores the histograms in the
scratchpad, which we show in Figure 5.5. Without scratchpad atomics, we fall back to
Partitioned Global.

Partitioned Private. Partitioned Private provides each thread with its own copy of
the histogram residing in scratchpad memory, as depicted in Figure 5.6. Partitioned
Private incurs no contention over buckets in case of a small number of clusters, in contrast
to the Partitioned Local strategy. However, Partitioned Private incurs a higher merging
overhead than the previous strategies and also requires more space in scratchpad memory.
This strategy outperforms the other approaches if 𝑘 is small.

Summary. To summarize, a Multi-Pass strategy for the GPU requires an efficient
centroid update on GPUs. In our analysis, we separate the centroid update into logically
distinct parts, Feature Sum and Mass Sum. In Feature Sum, we address the large working
set of Cluster Merge by introducing the space-efficient Partitioned Features strategy.
For Mass Sum, Partitioned Private and Partitioned Local operate in the processor
cache, but have different trade-offs. With these improvements, our centroid update is a
cache-efficient, Multi-Pass k-means strategy for GPUs.
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Figure 5.7: Fusing point assignment and centroid update by
synchronizing the thread block.

5.3 Single-Pass GPU k-Means

All state-of-the-art k-means algorithms on GPUs compute point assignment and centroid
update in two separate phases. During each phase, the point data is read from GPU
memory, which leads to inefficient use of memory bandwidth. In this section, we show
how both phases can be combined to process one iteration with a single pass over the
data points. We illustrate the difference between single-pass and multi-pass execution in
Figure 5.7.

Fusing point assignment and centroid update is challenging, because the phases prefer
opposite data layouts for efficient data accesses. In point assignment, threads access
individual points and thus prefer a row-wise layout. In contrast, during centroid update,
threads access individual features of points and therefore prefer a column-oriented
layout. To fuse these phases, we must decide on a single data layout. Our key idea is to
cache a batch of data points in scratchpad memory and transpose it on-the-fly from a
row-oriented to a column-oriented format. This presents two challenges: transposing
the data layout of the points and efficiently synchronizing threads.

Transposing the Data Layout. Transposing data in cache requires sufficient space in
scratchpad memory to store one point per thread (i.e., 4 × 𝑡 × 𝑑 bytes, with 𝑡 threads).
Additionally, there must be enough space left for the working set of the centroid update
algorithm. The Partitioned Features strategy is essential for our idea to work on GPUs, as
the working set of Partitioned Features is very small compared to Cluster Merge. Thus,
we use the remaining space to transpose the data in scratchpad memory. Concretely, the
Cluster Merge strategy with Partitioned Private (Mass Sum) uses 4𝑡 (𝑘𝑑 + 𝑘 + 𝑑) bytes of
scratchpad memory, whereas the Partitioned Features strategy uses 4𝑡 (2𝑘 + 𝑑 + 1) bytes,
assuming 𝑡 threads per thread block.

Block-wise Synchronization. Threads in Partitioned Features write to distinct
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Figure 5.8: Support large data sets by streaming data to the
GPU in chunks.

features of the new centroids. However, because of the transpose, each thread processes
multiple points. Thus, each thread reads labels computed by other threads. In our
solution, threads exchange labels only within a thread block. To this purpose, we
synchronize the thread block with a thread barrier between point assignment and
centroid update, as depicted in Figure 5.7(b).

Summary. In summary, the key to fusing the point assignment and the centroid
update is to employ the Partitioned Features strategy (Feature Sum) and Partitioned
Private strategy (Mass Sum) as the centroid update algorithm. Only with enough free
cache space are we able to efficiently transpose the data layout on-the-fly.

5.4 Supporting Large Data Sets

In Figure 5.8, we extend our GPU-based execution strategies to handle data sets larger
than GPU memory. We divide the point data into chunks, such that at least two chunks
fit into GPU memory. Then, a dispatcher selects and transfers chunks to GPU memory
via the interconnect. In parallel to ongoing transfers, the GPU computes a k-means
iteration for each chunk, and adds the output to a partial result. This intermediate result
resides in GPU memory and consists of partial sums and counts per cluster, as previously
described in Feature Sum and Mass Sum. Optionally, the CPU also processes chunks. In
this case, as multiple processors are used, chunks residing in the memory attached to a
processor can be processed in-place using operator placement [78]. After all chunks are
processed, we merge the intermediate results of the CPU and the GPU summing the
intermediates and dividing final sums to obtain new centroids.

In contrast to previous chunking approaches [252, 395], we aggregate the results of
chunks locally on the GPU, instead of transferring each individual result to CPU memory.
Thus, we merge results in parallel on the GPU and reduce transfer overhead.
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5.5 Evaluation

In this section, we evaluate our k-means strategies. We review our setup in Section 5.5.1.
In Section 5.5.2, we present our results, and discuss them in Section 5.5.3.

5.5.1 Setup and Configuration

First, we introduce our methodology and experimental setup. After that, we describe
our applied hardware tuning settings and data set. Finally, we introduce the experiments
that we use to evaluate our strategies.

Methodology and Environment. We evaluate our implementation on a CPU and a
GPU. Our implementation is based on OpenCL and we measure runtime of OpenCL
kernels. CPU experiments are conducted on an Intel Core i7-6700K (“Skylake”) CPU
running at 3.4 GHz with 4 cores, 2-way SMT, and 32 GiB memory. In our GPU
experiments, we use an Nvidia GeForce GTX 1080 (“Pascal”) with 8 GiB memory. The
test machine runs Ubuntu 16.04 LTS. We use the Intel OpenCL Runtime 16.1.1 for CPU
code, and the Nvidia OpenCL 1.2 (CUDA 8.0.0) runtime for GPU code. Unless stated
otherwise, on the GPU we exclude data transfer time to dedicated memory to avoid
biased observations of execution time.

Hardware Tuning. To reach peak performance on each processor, we evaluate every
OpenCL kernel with different tuning settings. We optimize our GPU code to employ
the scratchpad memory and a coalesced memory access pattern. In contrast, the CPU
implementation avoids the memory copy to OpenCL local memory and uses a sequential
access pattern. We tune the vector lengths and thread block sizes. We format the input
data in a column-oriented layout.

Data Sets. Our measurements use synthetically generated data sets following Arthur
and Vassilvitskii [39]. Thus, we sample 10 centroids using a uniform random distribution
in a hypercube, where each dimension ranges from -100 to 100. For each centroid, we
sample an equal number of points from a normal distribution in a radius of 10 around the
centroid. We measure throughput on 2 GiB data sets with varying 𝑘 and 𝑑 values. The
2 GiB data set size amortizes runtime system overheads while minimizing experiment
runtime. We set the number of features as 𝑑 ∈ {2, 4, 8, . . . , 256} and adjust the number of
points 𝑁 such that data size remains constant.

Experiments. We conduct seven experiments that investigate the scalability of param-
eters on GPUs. The first and second experiment are microbenchmarks to determine the
best strategies for Feature Sum and Mass Sum. The third experiment compares different
k-means strategies and breaks down execution times for each strategy. Experiments
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Figure 5.9: Comparison of Feature Sum strategies.

four and five examine the scaling behavior of each strategy while varying either the 𝑘

or the 𝑑 values. We transfer varying chunk sizes over PCI-e in experiment six. The last
experiment investigates scalability for datasets that exceed the GPU memory capacity.

We choose these experiments because they explore the parameter space and analyze
the trade-offs of different strategies. We report the mean and standard deviation (if
above 5%) over 30 iterations.

Baselines. We compare our results to two open source frameworks, Armadillo [362]
version 8.400 on the CPU and Rodinia [95] version 3.1 on the GPU. Armadillo is a linear
algebra library for C++. It uses a Single-Pass k-means strategy on the CPU with OpenMP
multi-threading support. We configure 8 threads. Rodinia features a CUDA k-means
benchmark that uses the Cross-Processing strategy. Due to limited hardware texture
memory and lack of data streaming support, Rodinia is constrained to a 512 MiB data
size. We extrapolate results to 2 GiB. In addition to Rodinia, we have implemented our
own Cross-Processing strategy optimized for our hardware.

5.5.2 Results

In this section, we present our evaluation results.

Feature Sum Strategies

In Figure 5.9, we compare the Cluster Merge strategy proposed by Li et al. [252] to
compute Feature Sums with our Partitioned Features strategy. We investigate the number
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Figure 5.10: Comparison of Mass Sum strategies.

of features and the number of clusters, because both parameters impact performance
and size of the working set. We set 𝑘 = 4 and 𝑘 = 64. To keep data size constant, 𝑁
decreases for higher values of 𝑑 .

Observations on GPU. Cluster Merge and Partitioned Features show equal through-
put if both parameters are set to small values, i.e., 𝑘 = 4 and 𝑑 ≤ 16. However, Partitioned
Features outperforms Cluster Merge when 𝑘 = 64 or 𝑑 > 16. The reason is that less thread
blocks fit into scratchpad memory, because Cluster Merge’s working set grows with
higher values of k and d. Consequently, the GPU’s hardware scheduler runs less thread
blocks (i.e., lower occupancy), thus reducing parallelism. If 𝑘 × 𝑑 > 384, Cluster Merge
falls back to GPU memory, as the working set of a single thread block does not fit into
scratchpad memory. For Partitioned Features, we observe a small drop in performance
for increasing 𝑘 and 𝑑 .

Observations on CPU. The throughput of Cluster Merge halves for both settings of 𝑘
and continues to drop for 𝑘 = 64. Partitioned Features is initially slower than Cluster
Merge. However, Partitioned Features does not fall back to L2 cache for 𝑘 = 64, because
features are partitioned over multiple threads. Thus, Cluster Merge and Partitioned
Features have similar performance on CPUs.

Summary. Overall, our Partitioned Features strategy scales to a higher number of
features than Cluster Merge on the GPU.

Mass Sum Strategies

We evaluate the throughput of different Mass Sum strategies for a varying 𝑘 in Figure 5.10.
Since Mass Sum accesses only labels, 𝑑 has no impact on performance.
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Figure 5.11: Comparison of execution times between k-means
strategies on CPU and GPU for 4 features and 4 clusters.

Observations on GPU. Partitioned Private performs best until 𝑘 = 16. After this point,
the growing working set decreases the GPU occupancy, which decreases throughput.
Starting from 𝑘 = 128, Partitioned Local outperforms Partitioned Private. Partitioned
Global’s throughput increases above 𝑘 = 4, as write contention is lower. Global Atomic
achieves very low throughput due to write contention involving thousands of threads.

Observations on CPU. Partitioned Private has sufficient cache space for a stable
throughput. In contrast, Partitioned Local and Global achieve five times lower throughput
than Partitioned Private. Global Atomic also has low throughput, despite having less
write contention than on the GPU.

Summary. Partitioned Private achieves the highest peak throughput on both
processors. However, Partitioned Local scales to a higher number of clusters on the GPU.

Runtime Performance

In this experiment, we compare the overall execution times of k-means strategies per
processor and break down the individual execution times. In Figure 5.11, we show the
execution times of all strategies for 𝑘 = 4 and 𝑑 = 4. For strategies with multiple phases,
we show the relative time spent per phase in percent in Figure 5.12.

Strategies. From the previous experiments, we learn that the Partitioned Feature
(Feature Sum) and the Partitioned Private (Mass Sum) strategies combine to a fast centroid
update. We derive three major strategies which we compare. The Cross-Processing strategy
performs the point assignment on the GPU and performs the centroid update on the
CPU, transferring the labels to the CPU between steps (state-of-the-art). The Multi-Pass
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Figure 5.12: Execution time breakdowns for Cross-Processing
and Multi-Pass on CPU and GPU for 4 features and 4 clusters.

strategy uses our fast centroid update and performs the point assignment and centroid
update on the same processor (Section 5.2). The Single-Pass strategy fuses our centroid
update routine with the point assignment to processes one k-means iteration with a
single pass over the data points (Section 5.3).

Observations. The Cross-Processing strategy is dominated by the Feature Sum and
label transfers from the GPU to the CPU. On the CPU, the Multi-Pass strategy has
the highest execution time and is dominated by point assignment and Feature Sum.
The Single-Pass strategy halves the execution time because it needs to read the data
points only once. On the GPU, the Multi-Pass strategy outperforms the Cross-Processing
strategy by 9.1×. The Single-Pass strategy improves the performance by 2× compared to
the Multi-Pass strategy and by 19.3× compared to the Cross-Processing strategy.

Summary. Our Single-Pass strategy reduces memory accesses and is thus able to
outperform the other strategies by more than 1.8× on all processors.

Scaling Clusters

In Figure 5.13, we investigate the impact of different numbers of clusters 𝑘 on the
throughput.

Observations on GPU. The Single-Pass strategy outperforms the Multi-Pass strategy
for 𝑘 ≤ 16 by up to 2×. However, the Multi-Pass strategy outperforms the Single-Pass
strategy starting from 𝑘 = 32. Both strategies converge to the same performance of the
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Figure 5.13: Performance of strategies for varying number of
clusters on CPU and GPU with 4 features.

Cross-Processing strategy starting from 𝑘 = 128. This is because the computational
intensity of point assignment increases with growing 𝑘 .

Observations on CPU. The Single-Pass strategy outperforms the Cross-Processing
strategy until 𝑘 ≥ 16. Starting from this point, the single and Multi-Pass strategies have a
similar performance and are outperformed by the Cross-Processing strategy. The reason
is that the Cross-Processing strategy exploits the GPU to run point assignment.

Summary. Overall, throughput generally decreases as 𝑘 increases. However, our
GPU Multi-Pass strategy retains a speedup of at least 1.8× over Cross-Processing.

Scaling Features

We scale the number of features 𝑑 and measure the throughput in Figure 5.14. We set the
number of clusters to 𝑘 = 4. As we keep data size constant with scaling 𝑑, the number
of data points 𝑁 halves with every doubling of 𝑑. Thus, the computational intensity
of point assignment and Feature Sum does not change. However, the computational
intensity of Mass Sum scales with 1

𝑑
.

Observations on GPU. Our Single-Pass strategy outperforms the Multi-Pass strategy
for 𝑑 ≤ 32 by 1.1–2.1×. For greater 𝑑 , the throughput of both strategies is similar and is
more than 3.4× faster compared to Cross-Processing.

Observations on CPU. The Single-Pass strategy consistently outperforms the Multi-
Pass strategy and the Armadillo baseline.
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Figure 5.14: Performance of strategies for varying number of
features on CPU and GPU with 4 clusters.
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execute pipeline.
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Chunk Transfers

We investigate the impact of chunk sizes on our chunk-wise transfer strategy in two parts.
First, we observe only the transfer from main memory to GPU memory in Figure 5.15(a).
Next, in Figure 5.15(b), we observe a three-stage pipeline. In this pipeline, each chunk
is copied into a pinned buffer in CPU memory, then transferred to GPU memory over
PCI-e 3.0, and finally processed on the GPU. To measure the transfer bandwidth, we call
an empty GPU function on each chunk. We show the mean and standard deviation (if
above 5%) over 100 transfers. As an upper bound, we measure the maximum bandwidth
using the CUDA bandwidth utility.

Observations. The transfer without memcpy (up to 11.4 GiB/s) nearly reaches the
throughput limit of 12.2 GiB/s. We achieve maximum throughput with chunk sizes
between 8 and 64 MiB. In contrast, when running the complete pipeline, we observe a
maximum throughput of 9.8 GiB/s with chunk sizes of 4, 8, 16, and 512 MiB. However,
all measurements are within 5% of the maximum observation.

Thus, we conclude that main memory copies slow down throughput by 20%. In
contrast, chunk sizes have only a small impact on overall PCI-e throughput.

Data Scaling

In Figure 5.16, we investigate the scalability of our Single-Pass and Multi-Pass strategies
in the case when data exceeds the size of GPU memory. We run the experiment on recent
hardware, using an Intel Xeon Gold 6126 (“Skylake-SP”) CPU with 12 cores at 2.6 GHz
and an Nvidia Tesla V100-PCIE (“Volta”) GPU connected via PCI-e 3.0. We scale the
size of point data from 1 GiB to 60 GiB and consider data-intensive (𝑘 = 4) as well as
compute-intensive (𝑘 = 64) scenarios with 𝑑 = 4 features. We configure 16 MiB chunks,
based on our results in Section 5.5.2. To emphasize the transfer process, we transfer all
data to the GPU from CPU memory and do not cache any data in GPU memory.

Observations on GPU. Our Single-Pass and Multi-Pass strategies always cluster
points with the full PCI-e bandwidth. This is possible because we completely overlap
data transfer with computation and our strategies complete the clustering before the
next chunk arrives. We also show the kernel execution times of both strategies and relate
them to the bandwidths of PCI-e 3.0 (measured) and the novel NVLink 2.0 (projected1)
interconnects. In the data-intensive case, both strategies are able to fully utilize the
interconnect bandwidth of PCI-e 3.0 and NVLink 2.0. In contrast, for a compute-intensive
𝑘, both strategies saturate PCI-e 3.0, but neither would saturate NVLink 2.0. However,

1Nvidia does not support OpenCL on IBM POWER platforms, thus we could not measure NVLink.
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Figure 5.16: Performance of strategies for increasing data size
on CPU and GPU with (a) 4 and (b) 64 clusters, and 4 features.
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our Single-Pass strategy achieves 58% of NVLink’s bandwidth, whereas the Multi-Pass
strategy reaches only 43%.

Observations on CPU. In the compute-intensive scenario, the GPU is 1.5× faster than
the CPU. However, when data-intensive, the CPU outperforms the GPU by 2.6× due to
the PCI-e 3.0 bandwidth limit. In contrast, NVLink 2.0 would enable the GPU to achieve
a speedup of 2.5× over the CPU.

Summary. Overall, the GPU is bound by the data transfer bottleneck when connected
by PCI-e 3.0. The GPU would only be capable of processing data faster than the CPU
when we assume an NVLink 2.0 interconnect. Overall, we show the feasibility of GPU
co-processing for data-intensive algorithms.

5.5.3 Discussion

In this chapter, we have investigated how a single-pass strategy is able to scale k-means
to large, out-of-core data sets. We summarize our lessons learned.

Centroid Update Strategies. In our experiments, we showed that the Cluster Merge
strategy of Feature Sum has a performance difference of two orders-of-magnitude
between 𝑑 = 2 and 𝑑 = 256. In the worst case, Feature Sum is 4.6× slower on GPU than on
CPU, thus motivating the Cross-Processing strategy. In contrast, our Partitioned Features
strategy improves such cases by up to 96.7× on the GPU. Furthermore, we showed that,
unlike on CPU, there is no single, best Mass Sum strategy on GPU. Rather, Partitioned
Private performs up to 1.7× faster than Partitioned Local while 𝑘 ≤ 64. Falling back from
the scratchpad to GPU memory incurs a penalty of 1.8–3×. In sum, Partitioned Features
and Partitioned Private/Local lay the foundation for efficient centroid update on GPUs.

Runtime Performance. In analyzing k-means as a whole, we discovered that the
Cross-Processing strategy (i.e., centroid update on the CPU) is often more than ten
times slower compared to the Multi-Pass strategy (i.e., centroid update on the GPU).
The main reason is the aforementioned slow centroid update in combination with the
cross-processing problem. Furthermore, avoiding the multi-pass problem yields another
2× speedup between Multi-Pass and Single-Pass strategies on both processor types.

Parameter Scalability. We further observed that parameters are impacted unequally.
When scaling the number of clusters 𝑘 , computational intensity increases, which trans-
forms k-means from a memory-bound algorithm for𝑘 ≤ 32 to a compute-bound algorithm
for larger 𝑘 . Even though the computational intensity remains constant when scaling the
number of features 𝑑 for a fixed 𝑘 , performance decreases. If the cache footprint of point
assignment grows, the GPU occupancy decreases and point assignment eventually falls
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back to GPU memory.
Data Scalability. Our experiments highlight that GPU performance is bounded

by the data transfer bottleneck. Thus, a fast interconnect is required for the GPU to
consistently provide a speedup over a CPU. Our Single-Pass k-means strategy achieves a
higher interconnect utilization than other strategies when considering a fast interconnect.
However, more efficient point assignment techniques will be needed to overcome the
high computational intensity of large 𝑘 parameters.

5.6 RelatedWork

In the following, we contrast our k-means strategies to related work.
Intermediate Results. While early GPU-based k-means implementations where

limited to OpenGL [85, 373], recent languages such as OpenCL or CUDA are designed for
computational tasks and enable advanced optimizations. In particular, these languages
allow us to avoid materializing intermediate results.

Point Assignment. Avoiding materialization is especially relevant for assigning
points to clusters, because it is space- and memory-intensive to materialize all point-to-
centroid distances. This can be further optimized through caching centroids [139] and
data points [252] in scratchpad memory or the L1 cache. Our point assignment phase
builds on this approach and adds processor-specific optimizations.

Optimizations that reduce the theoretical computational complexity of point as-
signment emphasize our work, because high 𝑘-values do not make k-means computa-
tion-bound. Specifically, Hall and Hart [166] apply Elkan’s kd-tree approach [132] to a
GPU implementation. They propose to store centroids in a kd-tree, such that finding
the nearest centroid requires less comparisons for large 𝑘. These optimizations are
orthogonal and complementary to our work.

Centroid Update. Updating centroids on GPUs [252] or MICs [245] has been proposed
previously. We evaluate this Multi-Pass strategy for a wide range of cluster and feature
parameters. In particular, we show that Cluster Merge is inefficient on GPUs and
introduce new optimizations with our cache-efficient Partitioned Features strategy.

Feature Sum. Regarding the individual parts of centroid update, researchers
proposed different solutions using GPUs. First, Feature Sum was implemented by
using SQL group-by aggregation [178, 320], which has been implemented on CPUs [283]
and GPUs [170, 219]. However, Feature Sum in k-means and relational-style group-by
aggregation differ significantly. In particular, having tens or hundreds of features is
common in data sets, but aggregating over this many attributes is uncommon in relational
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queries (e.g., TPC-H [1]). Thus, to the best of our knowledge, we are the first who
optimize co-processor group-by aggregation for this use case.

Mass Sum. Second, Mass Sum on the GPU could exploit histogram computation [292].
These general implementations sort pixel values into buckets, which requires, e.g.,
divisions or branches. However, frequent branch divergence reduces performance on
GPUs [386]. In contrast, in our Mass Sum strategies, labels directly index into buckets and
thus avoid branches. Furthermore, our Partitioned Local strategy uses hardware-native
atomic operations in scratchpad memory, which were emulated in software at the time
of previous work [298].

Cross Processing. GPUMiner [137] reduces transfer overhead for the labels in the
Cross-Processing strategy with bitmap compression. In contrast, we update centroids
directly on the GPU with our Multi-Pass and Single-Pass strategies to eliminate this
source of overhead entirely.

Single Data Pass. CPU implementations that compute k-means in a single data
pass exist [276, 362]. However, on GPUs, we require a different approach because our
Single-Pass strategy must reshuffle data between threads on-the-fly.

Data Transfers. Transferring data from CPU memory to the GPU has been found to
have negligible overhead [44, 416]. In contrast, our results show that efficient k-means
implementations for recent GPUs can incur a data transfer bottleneck. Thus, we propose
to increase transfer bandwidth by utilizing a fast interconnect.

5.7 Conclusion

In this chapter, we propose a GPU-optimized algorithm for k-means. Our algorithm
centers around a highly-optimized strategy for updating centroids on GPUs. In our
algorithm, we solve two fundamental problems of previous approaches: cross-processing
and multi-pass execution. In contrast to previous approaches, we focus on reducing cache
space usage through architectural features of GPU hardware, such that we are able to
increase the effective parallelism. As a result, we propose a highly-optimized strategy
for k-means that runs entirely on a GPU and requires only a single pass over the data.
The evaluation shows that the Single-Pass strategy achieves up to 2× and 20× higher
throughput than the Multi-Pass and Cross-Processing strategies, respectively. We show
that our approach scales to large data sets exceeding the GPU memory capacity. In our
experiments, our GPU strategies perform at least as well as a CPU despite transferring
data over PCI-e 3.0. Finally, our Single-Pass strategy is the only strategy capable of
saturating the bandwidth of the NVLink 2.0 interconnect for data-intensive scenarios.

122



6
Conclusion

For a decade, researchers have pursued shorter query response times by processing data
on GPUs. With fast interconnects becoming commercially available, the success of data
management on GPUs must no longer be thwarted by the data transfer bottleneck. We
advocate redesigning DBMSs to process data out-of-core by exploiting fast interconnects.

In this dissertation, we have investigated the ways in which fast interconnects benefit
DBMSs through their high bandwidth and cache-coherence (Chapter 3). With our Triton
join, we have demonstrated that it is possible to efficiently join large relations on GPUs
by spilling the join state to CPU memory (Chapter 4). With our single-pass k-means
strategy, we have shown how a machine learning algorithm is able to efficiently iterate
over a large data set multiple times (Chapter 5). Thus, by enhancing GPUs with fast
interconnects, relational and machine learning scale to large data volumes stored in CPU
memory, and improve performance by up to 2.5–7.3× compared to a CPU.

During the course of this thesis, we have learned that high out-of-core performance
is attainable by designing new algorithms to be interconnect-conscious. Our insights
have come from pushing data management workloads to the limits of the hardware
and thereby evoking unanticipated performance behavior. A better understanding of
the hardware has led us to, i.a., improve irregular memory access bandwidth, freely
manage pageable memory, and orchestrate data transfers from within GPU kernels. As
a result, we have broadened the design space for out-of-core algorithms, which in turn
has allowed us to improve throughput. Overall, we conclude that future GPU-enabled,
interconnect-conscious DBMSs will be well-suited for large-scale data management.
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6.1 Research Outlook

This dissertation lays the foundation for research on scalable data management using
GPUs with fast interconnects. In the following, we discuss five open research challenges.

DBMS Design. In our research, we have focused on joins and k-means to show that
principle limitations of data management on GPUs can be solved using fast interconnects.
Future work could broaden our findings to other relational operators such as selections,
group-by aggregations, and set operators. We are currently investigating interconnect-
conscious index structures to scale, e.g., highly selective queries, range queries, outer
joins, and inequality joins. Moreover, placing operators across heterogeneous processors
could exploit the sequential-access CPU memory bandwidth of the CPU and the random-
access GPU memory bandwidth, which we have explored in a Master’s thesis [342].
Our heterogeneous, morsel-driven work scheduling approach could be extended to
operator pipelines, whereby the GPU could itself schedule work using native atomics.
The trade-offs inherent to data compression should be reevaluated for fast interconnects
and hardware-accelerated compression [4, 351]. These innovations should be combined
to improve the overall query performance of a DBMS.

Data Streaming. Fast interconnects are particularly interesting for data stream man-
agement due to the inherent network I/O. Modern network interface cards can achieve
a bandwidth comparable to that of CPU memory, and thus require new approaches
to ingest and process data [235, 427]. As individual real-world streams are unlikely to
reach these speeds, taking advantage of the hardware would involve either joining and
unioning thousands of streams or processing many queries in parallel, which would
necessitate new algorithms that efficiently scale to a large number of streams. High
data velocities could result in large windows that require spilling a large state to CPU
memory via the interconnect. Furthermore, fast interconnects can also integrate network
interface cards into the system, which provides new research opportunities [353].

Deep Learning. Recent neural network models such as BERT [123] and GPT-3 [80]
are affected by the data transfer bottleneck due to their large size. In effect, parameter
servers must scale to a large model size with fast response times to parameter queries. A
new out-of-core parameter server could scale the model size by applying our insights
into data transfer methods and data caching.

Data Loading. We notice that the data load time is typically not measured in research
publications. However, benchmarks such as TPC-H reflect that real-world workloads
often bulk load data before executing queries [1, §4.3]. Loading converts the data
format from, e.g., CSV, to a DBMS-specific format. In a Master’s thesis and subsequent
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publication, we have shown promising results by leveraging GPUs to reduce the data
load time [234, 235]. Future work could revisit our approach to load multiple data
streams in parallel, create indices during loading, and validate the input format to guard
against errors. Ultimately, this line of research would result in fast end-to-end query
performance.

Memory Hierarchy. Non-volatile memory and flash disks could be investigated to
scale the data volume beyond CPU memory. Fast interconnects provide GPUs access
to these storage technologies, which present additional challenges due to their read
and write characteristics. In contrast, disaggregated memory scales to petabytes of
space as well, but might involve complex data access paths [109, 394]. Instead of GPUs
with fast interconnects, CPUs with on-board high bandwidth memory could provide an
interesting alternative solution [61, 144, 426].

Fast Interconnect Technologies. In our work, we have evaluated NVLink 2.0 on
account of its current commercial availability. However, fast interconnects from multiple
hardware vendors are currently available for FPGAs (e.g., OpenCAPI) and announced
for GPUs in the near future (i.e., NVLink 4.0, Infinity Fabric, and CXL). We have provided
an overview of these technologies in Section 2.3.3. Future work could evaluate and
contrast the upcoming fast interconnects in practice.

In summary, we envision that future work will evolve GPU-enabled DBMSs alongside
the fast interconnects and will continue to expand the scope of GPUs in data management.
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