
Scalable Data Management
using GPUs with Fast Interconnects

Clemens Lutz

PhD Defense

10. November 2022

GPUs

Scalable Data Management using GPUs with Fast Interconnects 2

Compute: 3×
Memory bandwidth: 10×

GPUs

Scalable Data Management using GPUs with Fast Interconnects 3

Compute: 3×
Memory bandwidth: 10×

?

GPUs

Scalable Data Management using GPUs with Fast Interconnects 4

Compute: 3×
Memory bandwidth: 10×

GPU Databases:
$0.18 billion

Data Management using GPUs

Scalable Data Management using GPUs with Fast Interconnects 5

Database Market

$46 billion
(2018)

GPU Databases:
$0.18 billion

Data Management using GPUs

Scalable Data Management using GPUs with Fast Interconnects 6

Database Market

$46 billion
(2018)

DBMSs have not yet
adopted GPUs

GPU Databases:
$0.18 billion

Data Management using GPUs

Scalable Data Management using GPUs with Fast Interconnects 7

Database Market

$46 billion
(2018)

DBMSs have not yet
adopted GPUs

DBMSs have not yet
adopted GPUs

Why DBMSs haven’t adopted GPUs?

Scalable Data Management using GPUs with Fast Interconnects 8

Data-intensive queries

Data

(TBs)

DBMSs have not adopted
GPUs

GPU

Why DBMSs haven’t adopted GPUs?

Scalable Data Management using GPUs with Fast Interconnects 9

Data-intensive queries

Data

(TBs)

DBMSs have not adopted
GPUs

GPU

Because GPU-enabled data
management doesn’t scale

Why DBMSs haven’t adopted GPUs?

Scalable Data Management using GPUs with Fast Interconnects 10

Data-intensive queries

Data

(TBs)

DBMSs have not adopted
GPUs

GPU

Because GPU-enabled data
management doesn’t scale

Thesis Goal
Scale data management using GPUs to large data volumes

Why it doesn’t scale

Scalable Data Management using GPUs with Fast Interconnects 11

G
P

U
 M

e
m

o
ry

GPU

 Memory capacity

 Interconnect bandwidth

M
ai

n
 M

em
o

ry
CPU

Why it doesn’t scale

Scalable Data Management using GPUs with Fast Interconnects 12

G
P

U
 M

e
m

o
ry

GPU

Data

(TBs)

 Memory capacity

 Interconnect bandwidth

M
ai

n
 M

em
o

ry
CPU

Why it doesn’t scale

Scalable Data Management using GPUs with Fast Interconnects 13

M
ai

n
 M

em
o

ry
CPU

G
P

U
 M

e
m

o
ry

GPU

 Memory capacity

 Interconnect bandwidth

Store Ad hoc transfer
Data

(TBs)

σ π⋈ Γ

CPU
σ π⋈ Γσ π⋈ Γ

GPU

44 GiB/s

PCI-e 4.0

Why it doesn’t scale

Scalable Data Management using GPUs with Fast Interconnects 14

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

 Memory capacity

 Interconnect bandwidth

CPU
σ π⋈ Γσ π⋈ Γ

GPU

44 GiB/s

PCI-e 4.0

Why it doesn’t scale

Scalable Data Management using GPUs with Fast Interconnects 15

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

 Memory capacity

 Interconnect bandwidth
Data transfer bottleneck

Game Changer: Fast Interconnects

Scalable Data Management using GPUs with Fast Interconnects 16

Fast interconnectCPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

Game Changer: Fast Interconnects

Scalable Data Management using GPUs with Fast Interconnects 17

GPUCPU

Equivalent bandwidth1

Fast interconnect
M

ai
n

 M
em

o
ry

G
P

U
 M

e
m

o
ry

Game Changer: Fast Interconnects

Scalable Data Management using GPUs with Fast Interconnects 18

GPUCPU

Equivalent bandwidth1

Fast interconnect
M

ai
n

 M
em

o
ry

G
P

U
 M

e
m

o
ry

Game Changer: Fast Interconnects

Scalable Data Management using GPUs with Fast Interconnects 19

GPUCPU

Equivalent bandwidth1

Cache-coherence2

Fast interconnect
M

ai
n

 M
em

o
ry

G
P

U
 M

e
m

o
ry

 Unified address space
 Data-dependent memory accesses

Why a Fast Interconnect is not Sufficient

Scalable Data Management using GPUs with Fast Interconnects 20
G

P
U

 M
e
m

o
ry

GPUCPU
M

ai
n

 M
em

o
ry

Why a Fast Interconnect is not Sufficient

Scalable Data Management using GPUs with Fast Interconnects 21
G

P
U

 M
e
m

o
ry

GPUCPU
M

ai
n

 M
em

o
ry

Main Memory

CPU
Cache

GPU
Cache

GPU Memory

Fast Interconnect

Memory Hierarchy

Overview

Bandwidth

1000×

Capacity

1000×

GPU

G
P

U
 M

e
m

o
ry

Main Memory

CPU
Cache

GPU
Cache

GPU Memory

Fast Interconnect

CPU

Why a Fast Interconnect is not Sufficient

Scalable Data Management using GPUs with Fast Interconnects 22

Algorithm design:
 Data access
 State access
 Data locality

Memory Hierarchy

Overview M
ai

n
 M

em
o

ry

Bandwidth

1000×

Capacity

1000×

GPU

Main Memory

CPU
Cache

GPU
Cache

GPU Memory

Fast Interconnect

CPU

Why a Fast Interconnect is not Sufficient

Scalable Data Management using GPUs with Fast Interconnects 23

Interconnect-conscious
algorithm design

Memory Hierarchy

Overview

Algorithm design:
 Data access
 State access
 Data locality

G
P

U
 M

e
m

o
ry

M
ai

n
 M

em
o

ry

Bandwidth

1000×

Capacity

1000×

Contributions

Our Solution

Scalable Data Management using GPUs with Fast Interconnects 24

Pump Up the Volume
>

Interconnect-conscious
algorithm design

Data Management Problem

Data-intensive
query processing

Data

(TBs)
SIGMOD 2020

Contributions

Data Management Problem Our Solution

Triton join

Scalable Data Management using GPUs with Fast Interconnects 25

SIGMOD 2020

SIGMOD 2022

Pump Up the Volume
>

>

Data-intensive
query processing

Data

(TBs)

Interconnect-conscious
algorithm design

Stateful data
processing

#
#

#
#

Contributions

Iterative
algorithms

Data Management Problem Our Solution

Single-pass k-means strategy

Stateful data
processing

Triton join

Scalable Data Management using GPUs with Fast Interconnects 26

SIGMOD 2020

SIGMOD 2022

DaMoN 2018 DB Spektrum 2018

Pump Up the Volume
>

#
#

#
#

>

>

Data-intensive
query processing

Data

(TBs)

Interconnect-conscious
algorithm design

Contributions

Iterative
algorithms

Data Management Problem Our Solution

Single-pass k-means strategy

Stateful data
processing

Triton join

Scalable Data Management using GPUs with Fast Interconnects 27

SIGMOD 2020

SIGMOD 2022

DaMoN 2018 DB Spektrum 2018

Pump Up the Volume
>

#
#

#
#

>

>

Data-intensive
query processing

Data

(TBs) Solution: Efficient
out-of-core algorithms

Interconnect-conscious
algorithm design

1. Motivation

2. Data-intensive query processing

3. Stateful data processing

4. Iterative algorithms

5. Conclusion

Agenda

Scalable Data Management using GPUs with Fast Interconnects 28

Data

(TBs)

#
#

#
#

1. Motivation

2. Data-intensive query processing

3. Stateful data processing

4. Iterative algorithms

5. Conclusion

Agenda

Scalable Data Management using GPUs with Fast Interconnects 29

#
#

#
#

Data

(TBs)

Data

(TBs)Efficient Data Access

Scalable Data Management using GPUs with Fast Interconnects 30

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

transfer

Data

(TBs)Efficient Data Access

Scalable Data Management using GPUs with Fast Interconnects 31

CPU GPU

G
P

U
 M

e
m

o
ry

Transfer methods:
 Staged copy

Efficient Data Access

Scalable Data Management using GPUs with Fast Interconnects 32

Data

(TBs)

Gap

CPU GPU

G
P

U
 M

e
m

o
ry

Transfer methods:
 Staged copy

Efficient Data Access

Scalable Data Management using GPUs with Fast Interconnects 33

Data

(TBs)

Gap

How can GPUs efficiently
access data?

CPU GPU

G
P

U
 M

e
m

o
ry

Transfer methods:
 Staged copy

Transfer methods:
 Staged copy
 Coherence

Efficient Data Access

Scalable Data Management using GPUs with Fast Interconnects 34

Data

(TBs)

Gap

How can GPUs efficiently
access data?

CPU GPU

G
P

U
 M

e
m

o
ry

Insight: Exploit
cache-coherence

M
ai

n
 M

em
o

ry

Transfer methods:
 Staged copy
 Coherence

Efficient Data Access

Scalable Data Management using GPUs with Fast Interconnects 35

Data

(TBs)

Gap

How can GPUs efficiently
access data?

CPU GPU

G
P

U
 M

e
m

o
ry

Insight: Exploit
cache-coherence

M
ai

n
 M

em
o

ry

sum += *x

Example:

Efficient Data Access

Scalable Data Management using GPUs with Fast Interconnects 36

Data

(TBs)

1.5×

How can GPUs efficiently
access data?

M
ai

n
 M

em
o

ry

Insight: Exploit
cache-coherence

Transfer methods:
 Staged copy
 Coherence

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

sum += *x

Example:

Efficient Data Access

Scalable Data Management using GPUs with Fast Interconnects 37

Data

(TBs)

How can GPUs efficiently
access data?

Insight: Exploit
cache-coherence

Interconnect-conscious
data access

1.5×

Transfer methods:
 Staged copy
 Coherence

CPU GPU

G
P

U
 M

e
m

o
ry

M
ai

n
 M

em
o

ry

sum += *x

Example:

Hash Join: Scaling Outer Relation

#

#

#

#

hash(k)

#

access

Scalable Data Management using GPUs with Fast Interconnects 38

CPU GPU
M

ai
n

 M
em

o
ry

G
P

U
 M

e
m

o
ry

Coherence

Data

(TBs)

Hash Join: Scaling Outer Relation

Scalable Data Management using GPUs with Fast Interconnects 39

Data: 2 GiB ⋈ 122 GiB

Data

(TBs)

Hash Join: Scaling Outer Relation

larger than GPU memory

Scalable Data Management using GPUs with Fast Interconnects 40

Data: 2 GiB ⋈ 122 GiB

Data

(TBs)

Hash Join: Scaling Outer Relation

Scalable Data Management using GPUs with Fast Interconnects 41

Data: 2 GiB ⋈ 122 GiB
CPU: Intel Xeon

with 12 cores

larger than GPU memory

Data

(TBs)

Hash Join: Scaling Outer Relation

Scalable Data Management using GPUs with Fast Interconnects 42

Data: 2 GiB ⋈ 122 GiB
CPU: Intel Xeon

with 12 cores
GPU: Nvidia V100

larger than GPU memory

Data

(TBs)

Hash Join: Scaling Outer Relation

Scalable Data Management using GPUs with Fast Interconnects 43

Data: 2 GiB ⋈ 122 GiB
CPU: Intel Xeon

with 12 cores
GPU: Nvidia V100

larger than GPU memory

Data

(TBs)

Hash Join: Scaling Outer Relation

Scalable Data Management using GPUs with Fast Interconnects 44

Data: 2 GiB ⋈ 122 GiB
CPU: Intel Xeon

with 12 cores
GPU: Nvidia V100

4×

Data

(TBs)

Hash Join: Scaling Outer Relation

Scalable Data Management using GPUs with Fast Interconnects 45

4× 6×

Data: 2 GiB ⋈ 122 GiB
CPU: Intel Xeon

with 12 cores
GPU: Nvidia V100

Data

(TBs)

Hash Join: Scaling Outer Relation

Scalable Data Management using GPUs with Fast Interconnects 46

4× 6×

GPUs can efficiently process
large, out-of-core data sets

Data: 2 GiB ⋈ 122 GiB
CPU: Intel Xeon

with 12 cores
GPU: Nvidia V100

Data

(TBs)

Findings Summary

 Fast interconnect enables scalability

 Interconnect-conscious data access
• Coherence

 Scale outer relation of hash join
• 4× speedup

Scalable Data Management using GPUs with Fast Interconnects 47

Data

(TBs)

1. Motivation

2. Data-intensive query processing

3. Stateful data processing

4. Iterative algorithms

5. Conclusion

Agenda

Scalable Data Management using GPUs with Fast Interconnects 48

Data

(TBs)

#
#

#
#

Hash Join: Scaling Inner Relation

#

#

#

#

hash(k)

#

build

Scalable Data Management using GPUs with Fast Interconnects 49

CPU GPU
M

ai
n

 M
em

o
ry

G
P

U
 M

e
m

o
ry

Data

(TBs)

R S

Hash Join: Scaling Inner Relation

#

#

#

#

hash(k)

#

probe

Scalable Data Management using GPUs with Fast Interconnects 50

CPU GPU
M

ai
n

 M
em

o
ry

G
P

U
 M

e
m

o
ry

Data

(TBs)

R S

Hash Join: Scaling Inner Relation

Scalable Data Management using GPUs with Fast Interconnects 51

#
#

#
#

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Hash Join: Scaling Inner Relation

Scalable Data Management using GPUs with Fast Interconnects 52

>2×

#
#

#
#

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Hash Join: Scaling Inner Relation

Scalable Data Management using GPUs with Fast Interconnects 53

>2×

GPU memory

 Join state has
limited size

#
#

#
#

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Hash Join: Scaling Inner Relation

Scalable Data Management using GPUs with Fast Interconnects 54

GPU memory

 Join state has
limited size

CPU scales

>2×

#
#

#
#

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Hash Join: Scaling Inner Relation

Scalable Data Management using GPUs with Fast Interconnects 55

GPU memory

 Join state has
limited size

CPU scales

How can GPU hash join scale
to a large join state?

>2×

#
#

#
#

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Approach: Spill Hash Table

Scalable Data Management using GPUs with Fast Interconnects 56

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

#

#

#

#

hash(k)

#

access

#
#

#
#

How can GPU hash join scale
to a large join state?

Hash Join: Scaling Inner Relation

Scalable Data Management using GPUs with Fast Interconnects 57

GPU memory GPU scales

 Scalable

#
#

#
#

How can GPU hash join scale
to a large join state?

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Hash Join: Scaling Inner Relation

Scalable Data Management using GPUs with Fast Interconnects 58

GPU memory GPU scales

 Scalable

Performance cliff

#
#

#
#

How can GPU hash join scale
to a large join state?

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Hash Join: Scaling Inner Relation

Scalable Data Management using GPUs with Fast Interconnects 59

GPU scales

 Scalable

 Not efficient

Performance cliff

Spilling the hash table is not
efficient

GPU memory

#
#

#
#

How can GPU hash join scale
to a large join state?

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Why is Spilling not Efficient?

Scalable Data Management using GPUs with Fast Interconnects 60

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

#

#

#

#

hash(k)

#

random accesses

#
#

#
#

16
bytes

Why is Spilling not Efficient?

Scalable Data Management using GPUs with Fast Interconnects 61

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

#

#

#

#

hash(k)

#

random accesses

#
#

#
#

Hash join incurs fine-grained
random access pattern

16
bytes

Random Access Bandwidth Gap

Scalable Data Management using GPUs with Fast Interconnects 62

Gap

#
#

#
#

Hash join incurs fine-grained
random access pattern

Random Access Bandwidth Gap

Scalable Data Management using GPUs with Fast Interconnects 63

Gap

#
#

#
#

Hash join incurs fine-grained
random access pattern

How can GPUs efficiently
access out-of-core state?

Efficient State Access

Scalable Data Management using GPUs with Fast Interconnects 64

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

Packets for writes

Packets for reads

#
#

#
#

Hash join incurs fine-grained
random access pattern

How can GPUs efficiently
access out-of-core state?

Efficient State Access

Scalable Data Management using GPUs with Fast Interconnects 65

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

Data

Packet Header

Enabled Bytes

16-byte write packet

67%
overhead

16 bytes of data

Packets for writes

Packets for reads

#
#

#
#

Hash join incurs fine-grained
random access pattern

How can GPUs efficiently
access out-of-core state?

Data

Efficient State Access

Scalable Data Management using GPUs with Fast Interconnects 66

Packet Header

Enabled Bytes Data 0

Packet Header

Data 1

Data 8

128 bytes
of data

11%
overhead

16-byte write packet

67%
overhead

16 bytes of data

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

Packets for writes

Packets for reads

128-byte coalesced write packet

#
#

#
#

Hash join incurs fine-grained
random access pattern

How can GPUs efficiently
access out-of-core state?

Efficient State Access

Scalable Data Management using GPUs with Fast Interconnects 67

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

Data

Packet Header

Enabled Bytes Data 0

Packet Header

Data 1

Data 8

128 bytes
of data

11%
overhead

16-byte write packet

67%
overhead

16 bytes of data

Packets for writes

Packets for reads

128-byte coalesced write packet

#
#

#
#

Insight: Perfect coalescing
reduces overhead

Hash join incurs fine-grained
random access pattern

How can GPUs efficiently
access out-of-core state?

Perfect Coalescing

Scalable Data Management using GPUs with Fast Interconnects 68

11×

#
#

#
#

Insight: Perfect coalescing
reduces overhead

Hash join incurs fine-grained
random access pattern

How can GPUs efficiently
access out-of-core state?

Perfect Coalescing

Scalable Data Management using GPUs with Fast Interconnects 69

11×

#
#

#
#

Interconnect-conscious
state access

Insight: Perfect coalescing
reduces overhead

Hash join incurs fine-grained
random access pattern

How can GPUs efficiently
access out-of-core state?

Approach: Out-of-Core Partitioning

Scalable Data Management using GPUs with Fast Interconnects 70

#
#

#
#

Approach: Out-of-Core Partitioning

Scalable Data Management using GPUs with Fast Interconnects 71

stream data to GPU

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

#
#

#
#

Approach: Out-of-Core Partitioning

Scalable Data Management using GPUs with Fast Interconnects 72

stream data to GPU

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

partition(T)

#
#

#
#

Approach: Out-of-Core Partitioning

Scalable Data Management using GPUs with Fast Interconnects 73

stream data to GPU

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

partition(T)

perfectly coalesced
writes

#
#

#
#

Approach: Out-of-Core Partitioning

Scalable Data Management using GPUs with Fast Interconnects 74

stream data to GPU

CPU GPU

M
ai

n
 M

em
o

ry

G
P

U
 M

e
m

o
ry

partition(T)

perfectly coalesced
writes

Exploit perfect coalescing
using out-of-core partitioning

#
#

#
#

Out-of-Core Partitioning Performance

Scalable Data Management using GPUs with Fast Interconnects 75

1.6×

Data: 15 GB
Fanout: 512 partitions

#
#

#
#

Exploit perfect coalescing
using out-of-core partitioning

Out-of-Core Partitioning Performance

Scalable Data Management using GPUs with Fast Interconnects 76

Data: 15 GB
Fanout: 512 partitions

1.6×

#
#

#
#

GPU efficiently partitions
data out-of-core

Exploit perfect coalescing
using out-of-core partitioning

The Triton Join: Overview

Scalable Data Management using GPUs with Fast Interconnects 77

#
#

#
#

The Triton Join: Overview

Scalable Data Management using GPUs with Fast Interconnects 78

#
#

#
#

Main Memory

GPU
Cache

GPU Memory

Fast Interconnect
Out-of-core radix
partitioning

The Triton Join: Overview

Scalable Data Management using GPUs with Fast Interconnects 79

#
#

#
#

Main Memory

GPU
Cache

GPU Memory

Fast Interconnect
Out-of-core radix
partitioning

Caching partitions
in GPU memory

The Triton Join: Overview

Scalable Data Management using GPUs with Fast Interconnects 80

#
#

#
#

Main Memory

GPU
Cache

GPU Memory

Fast Interconnect

Caching partitions
in GPU memory

Build & probe
hash table

Out-of-core radix
partitioning

The Triton Join: Deep Dive

Scalable Data Management using GPUs with Fast Interconnects 81

S

R

#
#

#
#

The Triton Join: Deep Dive

Scalable Data Management using GPUs with Fast Interconnects 82

GPU Partitioning
1st Pass

Out-of-core
radix partitioning

S

R

#
#

#
#

S

The Triton Join: Deep Dive

Scalable Data Management using GPUs with Fast Interconnects 83

1st Pass 2nd Pass
GPU Partitioning

Out-of-core
radix partitioning R

#
#

#
#

The Triton Join: Deep Dive

Scalable Data Management using GPUs with Fast Interconnects 84

Hash Tables

Join R and S1st Pass 2nd Pass
GPU Partitioning

Build

Probe

Out-of-core
radix partitioning

S

R

#
#

#
#

The Triton Join: Deep Dive

Scalable Data Management using GPUs with Fast Interconnects 85

R⋈S

Hash Tables

Join R and S

Build

Probe

1st Pass 2nd Pass
GPU Partitioning

Out-of-core
radix partitioning

S

R

#
#

#
#

The Triton Join: Deep Dive

Scalable Data Management using GPUs with Fast Interconnects 86

Join R and S1st Pass 2nd Pass
GPU Partitioning

Caching partitions
in GPU memory

Out-of-core
radix partitioning

S

R
R⋈S

#
#

#
#

The Triton Join: Deep Dive

Scalable Data Management using GPUs with Fast Interconnects 87

Join R and S1st Pass 2nd Pass
GPU Partitioning

Caching partitions
in GPU memory

Out-of-core
radix partitioning

S

R
R⋈S

#
#

#
#

The Triton Join: Deep Dive

Scalable Data Management using GPUs with Fast Interconnects 88

Caching partitions
in GPU memory

Out-of-core
radix partitioning

R⋈S

S

R
Triton join is new hierarchical

hybrid hash join for GPUs

#
#

#
#

Triton Join Performance

Scalable Data Management using GPUs with Fast Interconnects 89

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

GPU memory

 Scalable

GPU scales

#
#

#
#

Triton join is new hierarchical
hybrid hash join for GPUs

Triton Join Performance

Scalable Data Management using GPUs with Fast Interconnects 90

GPU memory

>2×

 Scalable

 Efficient

#
#

#
#

Triton join is new hierarchical
hybrid hash join for GPUs

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Triton Join Performance

Scalable Data Management using GPUs with Fast Interconnects 91

GPU memory

>2×

 Scalable

 Efficient

#
#

#
#

Triton join is new hierarchical
hybrid hash join for GPUs

Efficiently scales to large
out-of-core join state

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Triton Join Performance

Scalable Data Management using GPUs with Fast Interconnects 92

GPU memory

 Scalable

 Efficient

No cliff

#
#

#
#

Efficiently scales to large
out-of-core join state

Triton join is new hierarchical
hybrid hash join for GPUs

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Triton Join Performance

Scalable Data Management using GPUs with Fast Interconnects 93

 Scalable

 Efficient

GPU memory

Performance degrades
gracefully

No cliff

#
#

#
#

Efficiently scales to large
out-of-core join state

Triton join is new hierarchical
hybrid hash join for GPUs

Data: 30 GiB ⋈ 30 GiB
CPU: IBM POWER9

with 16 cores
GPU: Nvidia V100

with NVLink 2.0

Findings Summary

 Interconnect-conscious state access
• Perfect coalescing

 Scalable join algorithm
• Out-of-core partitioning

• 2× speedup

Scalable Data Management using GPUs with Fast Interconnects 94

#
#

#
#

1. Motivation

2. Data-intensive query processing

3. Stateful data processing

4. Iterative algorithms

5. Conclusion

Agenda

Scalable Data Management using GPUs with Fast Interconnects 95

Data

(TBs)

#
#

#
#

How k-Means Works

Scalable Data Management using GPUs with Fast Interconnects 96

Point Assignment

Point Labels

How k-Means Works

Scalable Data Management using GPUs with Fast Interconnects 97

Point Assignment

Point Labels

Centroid Update

New Centroids

State-of-the-Art k-Means Strategy

Scalable Data Management using GPUs with Fast Interconnects 98

Point Assignment

Point Labels

Centroid Update

New Centroids

GPU CPU

State-of-the-Art k-Means Strategy

Scalable Data Management using GPUs with Fast Interconnects 99

Offload compute intensive
task to GPU

Point Assignment

Point Labels

Centroid Update

New Centroids

GPU CPU

State-of-the-Art k-Means Strategy

Scalable Data Management using GPUs with Fast Interconnects 100

Offload compute intensive
task to GPU

Point Assignment

Point Labels

Centroid Update

New Centroids

State transferGPU CPU

State-of-the-Art k-Means Strategy

Scalable Data Management using GPUs with Fast Interconnects 101

Offload compute intensive
task to GPU

Point Assignment

Point Labels

Centroid Update

New Centroids

Data Pass

1×

Data Pass

1×GPU CPU

State-of-the-Art k-Means Strategy

Scalable Data Management using GPUs with Fast Interconnects 102

Offload compute intensive
task to GPU

Point Assignment

Point Labels

Centroid Update

New Centroids

Data Pass

1×

Data Pass

1×GPU CPU

Overhead for state transfer
and data passes

Single-Pass k-Means Strategy

Scalable Data Management using GPUs with Fast Interconnects 103

 End-to-end GPU execution
• Centroid Update algorithm for GPU

Point Assignment

Centroid Update

GPU

Single-Pass k-Means Strategy

Scalable Data Management using GPUs with Fast Interconnects 104

 End-to-end GPU execution
• Centroid Update algorithm for GPU

 Increase data locality
• Fuse phases into a single GPU kernel

• Store state in scratchpad cache

Main Memory

GPU
Cache

GPU Memory

Fast Interconnect
GPU

Point Assignment

Centroid Update

Single-Pass k-Means Strategy

Scalable Data Management using GPUs with Fast Interconnects 105

 End-to-end GPU execution
• Centroid Update algorithm for GPU

 Increase data locality
• Fuse phases into a single GPU kernel

• Store state in scratchpad cache

Leverage data locality with
end-to-end GPU execution

Main Memory

GPU
Cache

GPU Memory

Fast Interconnect
GPU

Point Assignment

Centroid Update

Single-Pass k-Means Strategy

Scalable Data Management using GPUs with Fast Interconnects 106

 End-to-end GPU execution
• Centroid Update algorithm for GPU

 Increase data locality
• Fuse phases into a single GPU kernel

• Store state in scratchpad cache

Leverage data locality with
end-to-end GPU execution

Single data pass per iterationGPU

Data Pass

1×

Point Assignment

Centroid Update
Main Memory

GPU
Cache

GPU Memory

Fast Interconnect

Single-Pass k-Means Scalability

Scalable Data Management using GPUs with Fast Interconnects 107

Clusters: 64
Features: 4
CPU: Intel Xeon

with 12 cores
GPU: Nvidia V100 GPU

memory
GPU scales

Single-Pass k-Means Scalability

Scalable Data Management using GPUs with Fast Interconnects 108

Clusters: 64
Features: 4
CPU: Intel Xeon

with 12 cores
GPU: Nvidia V100 GPU

memory
GPU scales

8×

Single-Pass k-Means Scalability

Scalable Data Management using GPUs with Fast Interconnects 109

GPU efficiently iterates over
large working sets

Clusters: 64
Features: 4
CPU: Intel Xeon

with 12 cores
GPU: Nvidia V100 GPU

memory
GPU scales

8×

Findings Summary

 Interconnect-conscious data locality

 End-to-end GPU execution
• Single data pass

• 8× speedup

Scalable Data Management using GPUs with Fast Interconnects 110

1. Motivation

2. Data-intensive query processing

3. Stateful data processing

4. Iterative algorithms

5. Conclusion

Agenda

Scalable Data Management using GPUs with Fast Interconnects 111

#
#

#
#

Data

(TBs)

Conclusion

 Scalable data management using GPUs

Scalable Data Management using GPUs with Fast Interconnects 112

Conclusion

 Scalable data management using GPUs

 Fast interconnect is necessary, but not sufficient

Scalable Data Management using GPUs with Fast Interconnects 113

Conclusion

 Scalable data management using GPUs

 Fast interconnect is necessary, but not sufficient

 Interconnect-conscious design
• Data access Coherence

• State access Perfect coalescing

• Data locality End-to-end GPU execution

Scalable Data Management using GPUs with Fast Interconnects 114

Conclusion

 Scalable data management using GPUs

 Fast interconnect is necessary, but not sufficient

 Interconnect-conscious design
• Data access Coherence

• State access Perfect coalescing

• Data locality End-to-end GPU execution

 Overall, efficient out-of-core algorithms

Scalable Data Management using GPUs with Fast Interconnects 115

Data

(TBs)

#
#

#
#

Scalable Data Management using GPUs with Fast Interconnects 116

PhD Thesis Publications

SIGMOD 2020

Fast Interconnects

SIGMOD 2022

Triton Join Single-Pass k-Means

DaMoN 2018 DB Spektrum 2018

Additional Contributions

BTW 2021

Data Loading using GPUs

PVLDB 2019

Efficient Stream Processing

DaMoN 2021

Energy-Efficient Stream Join

Awards

SIGMOD 2020

Best Paper Award
& Reproducibility Badge

BTW 2021

Best Paper Award
& Reproducibility Badge

Conclusion

 Scalable data management using GPUs

 Fast interconnect is necessary, but not sufficient

 Interconnect-conscious design
• Data access Coherence

• State access Perfect coalescing

• Data locality End-to-end GPU execution

 Overall, efficient out-of-core algorithms

Scalable Data Management using GPUs with Fast Interconnects 117

Data

(TBs)

#
#

#
#

