

Efficient k-Means on GPUs

Clemens Lutz, Sebastian Breß, Tilmann Rabl Steffen Zeuch, Volker Markl

k-Means State-of-the-Art

- Accelerate point assignment on GPU
 - High parallelization power

Problem 1: Cross-Processing Incurs high PCI-e transfer costs

- Processing split between two processors
 - PCI-e bus transfer for labels and centroids

Solution: Update Centroids on GPU

- New algorithm for centroid update
 - Reduce cache footprint

Untile cache footprint from data features

Eliminate PCI-e transfer costs

C. Lutz et al.

Problem 2: Multi-Pass

Solution: Single pass per iteration

- Point assignment and centroid update each make a data pass
 - Global barrier necessary due to transposed data access
 - Transpose on-the-fly and use local barrier inside thread group instead

Benefits of Centroid Update on the GPU and a Single Data Pass

GPU:

Cross-processing problem: 10×

Multi-pass problem: 2×

• Overall: 20×

CPU:

• Multi-pass problem: 1.8×

Cross Multi Single

C. Lutz et al.

Contributions – "Efficient k-Means on GPUs"

Cross-Processing Problem

→ Efficient Centroid Update for GPUs

Multi-Pass Problem

→ Single-Pass k-Means

https://www.dfki.de/web/forschung/publikationen?pubid=9767

7