
Carafe
High-Performance, In-Memory Graph Processing with RDMA

Master’s Thesis

Clemens Lutz
ETH Zurich

October 2014

Advisors:

Animesh Trivedi
IBM Research, Zurich

Prof. Dr. Thomas R. Gross
Laboratory for Software Technology

ETH Zurich

Manager:

Dr. Thomas Weigold
IBM Research, Zurich





Abstract

Many real world problems operate on large graphs. Examples of these problems are reachability
queries in social graphs like Facebook, determining ranks of web pages on the Internet, or
calculating the shortest route in a city map. With the advent of Big Data, the size of such
graphs is constantly increasing and can now comprise millions of vertices and billions of edges.
Unsurprisingly, fast and efficient processing of large graphs has become an important class
of problems in the modern data analytics stack. State-of-the-art graph processing systems
divide and process graphs in a distributed setting using networked machines. Consequently,
for a known I/O intensive workload like graph processing, the network I/O cost governs the
overall performance. In order to reduce the network cost, these systems treat graph storage and
computation as a joint problem and try to co-locate graph computation to where the graph data
is stored, thus avoiding the expensive network I/O.

Inspired by the recent developments and the availability of high-performance network I/O
(e.g. RDMA) in data center networks, in this work we step back and consider what the right
abstraction for fast and efficient distributed graph processing is. We argue for decoupling and
considering storage challenges separately from computation. In this thesis, we propose Carafe,
a general-purpose graph storage and access framework that provides high-performance access
to graph entities (vertices and edges) and associated computation states (vertex and edge prop-
erties) in a distributed setting. To illustrate the capabilities of Carafe, we have implemented
online and offline (Pregel) graph processing applications. These systems perform well and our
implementation of PageRank on a graph containing millions of vertices outperforms GraphLab
and GraphX, two state-of-the-art systems, by a margin of 2.6× and 4.2×, respectively.
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1 Introduction

We are living in a data-centric world in which terabytes of data are routinely produced, stored,
and processed every day. To capture trends, associations, and dependencies between data points
in large data sets, researchers model them as graphs. Some real-world problems naturally occur
as graph problems. For example, Facebook, Twitter, and LinkedIn all store friendships, interests,
communities etc., as social graphs. Consider the background operations when LinkedIn suggests
your friends’ friends as people you may also know. The profile page of every person in the
network shows a chain of people connecting them to you, as in Milgram’s famous “small world”
experiment. Similarly, entering a search term in Google results in millions of web pages listed
by relevance. As a small but illustrative selection demonstrating large-scale use-cases, think of
the problem statements behind them: the first finds friends-of-friends in your social graph by
performing a breath- or depth-first search. The second ranks web pages on the Internet according
to their hyperlink structure, and displays them against a search query in a sorted order by their
ranks. All of these problems are intuitively expressed as graph operations. Consequently, fast
and efficient processing on large graphs has become an important class of problem in the modern
data analytics stack.

In a spirit similar to data-parallel frameworks, many distributed graph processing systems
have been proposed. Examples of such systems include Pregel, GraphLab, GraphX, Trinity,
and many more. These systems divide, store, and process graph data on a cluster of machines
in a distributed setting. Distributed computation becomes a necessity to meet the storage,
processing, and performance demands associated with large graphs. However, distributed large-
scale graph processing is a challenging problem. Graph processing has become very context
dependent and preprocessing or predicting results for online workloads is infeasible. It must be
done in a fast, low-latency manner. An example of such workload is finding interesting news
feeds that depend on your social graph, which includes structural information, such as your
friends, as well as contextual information, such as the closeness of a friendship, mutual interests,
permissions, and so forth. Another example is quickly calculating relevant advertisements based
on a user’s “like” graph. Offline graph analytics, in contrast, require high throughput to churn
through vast data sets in their entirety. For instance, Google calculates PageRanks of all websites
reachable on the Internet. Despite their differences, both paradigms have in common that graph
processing typically imposes little computation per vertex, thus is I/O intensive with little or
no predictability. The systems aspect of managing graph data in a distributed environment
brings additional challenges associated with storage, parallelization, scheduling, ordering, and
fault-tolerance.

Many of these systems treat graph storage and computation as a combined problem. This
design choice gives them flexibility to co-locate computation and relevant graph objects on
the same machine, thus to a large degree avoiding expensive network I/O. However, network
communication cannot be avoided completely. It depends upon
(a) the graph structure that indicates how vertices are connected and communicate;
(b) the graph partitioning scheme that dictates which vertex communications are local (i.e. both

sender and receiver vertices are located on the same machine) and which are remote;
(c) the graph computation itself that governs which nodes are participating in the communica-

tion.
As evident, to reduce the remote communicate cost one needs to come up with a sophisticated
graph partitioning logic. However, real-world graphs, e.g. social graphs on Facebook or Twitter,
are very densely connected and partitioning on such billion node graphs with equal load balancing
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1 Introduction

and minimal communication across partition boundaries is an NP-hard problem.
In this work, we step back and ask ourselves what the right abstraction for fast and ef-

ficient distributed graph computation is. We argue that graph storage challenges should be
addressed separately from computation. Ergo, we decouple storage and computation concerns
and optimize them individually. For example, which graph object access is local and which is
remote should be addressed by the storage system, not computation. The computation sys-
tem should focus on how to define and distribute workload independent of the data location,
do global synchronization, implement algorithms and optimizations. In this thesis, we propose
a general-purpose, high-performance graph storage and access framework that is not tailored
towards any specific computational model. The goal of the storage framework is to provide
high-performance access to graph entities (e.g. vertices, edges, properties), and associated com-
putation states. Carafe, our implementation of said framework, achieves such performance by
storing data in RStore. RStore is a high-performance, distributed, in-memory data store that
uses high-performance RDMA operations to deliver high bandwidth, low-latency access to data
stored in remote DRAM. RStore achieves this performance by building upon the separation
philosophy of RDMA, and has explicit API calls to setup and access storage. Carafe’s API
pushes this separation philosophy further into graph processing. By using Carafe’s API, graph
computation frameworks can identify and create their necessary, distributed resources upfront,
outside of performance critical sections, and later benefit from fast graph I/O operations during
computation when performance really matters.

To demonstrate the flexibility and capabilities of Carafe, we have implemented algorithms
directly on top of its API and developed a graph computation framework. The Carafe API
supports general purpose, online, graph-exploration type computations such as Dijkstra’s short-
est path algorithm, breadth- and depth-first search. Though underlying graph data is stored
in a distributed storage, the computation in this mode is not automatically distributed. The
developed framework is distributed and implements the bulk-synchronous, graph-parallel Pregel
computation model. In the Pregel model, we have implemented PageRank, shortest path based
on a breadth-first search, and FloodEcho algorithms. Of these, we demonstrate Dijkstra’s short-
est path algorithm on the Carafe API, and PageRank on the Pregel model.

Our contributions are the following:

• We propose to decouple graph storage from computation. We demonstrate the feasibility
of our approach by designing and building Carafe, our proposed system.

• We design and implement a system API that is built upon the separation philosophy of
RDMA. It delivers high-performance graph access during computation by letting applica-
tions identify and create graph resources upfront.

• We evaluate Carafe and compare the results with state-of-the-art frameworks in graph
processing.

• We analyze Carafe’s behavior under conditions of constrained data locality and individual
message passing; unlike others, the system is not inherently designed to minimize I/O.

The thesis is organized as follows. First, in chapter 2, we describe RDMA, explain the RStore
framework, and provide an overview of graph- and graph-processing-related topics. In chapter 3
we then discuss the design and architecture of Carafe and proceed with detailing the implemen-
tation thereof in chapter 4. Chapters 5 and 6 discuss the same topics for our Pregel framework.
In chapter 7 we provide an in-depth evaluation of our framework and compare our results to
other systems representing current state of the art. Next, chapter 8 positions our solution in
the context of prior work. Chapter 9 lists future work. Finally, in chapter 10 we summarize our
work, discuss and draw conclusions from it.
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2 Background

At its core Carafe is a distributed graph storage and processing system. It uses RStore, a
distributed, in-memory data store built using RDMA. In this chapter we first present background
on RDMA technology and how RStore leverages it to deliver high-performance graph data access
to Carafe. Subsequently we introduce relevant graph theory and graph processing models. To
close the gap between theory and models, we also discuss techniques to store and process graphs,
and their various trade-offs.

2.1 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a high-throughput, low-latency networking tech-
nology in which connected network end-point applications directly access memory buffers for
data transferal. It follows a separation philosophy in which remote data access is decoupled
from the connection setup and control. An application that wants to access remote data first
goes through a connection and resource (buffers, queues, etc.) setup phase. Then, for data
access, the application interacts directly with an RDMA-capable network interface (RNIC ) on
a fast data path, by-passing the operating system and CPU. This separation of control and
data is key to eliminating unnecessary operating system and CPU involvement, such as data
copies, interrupts, multiplexing, and scheduling. Elimination of these results in true zero-copy,
high-performance data access. In this thesis we put focus on preserving RDMA’s separation
philosophy and maintaining a zero-copy stack.

The “RDMA Protocol Verbs Specification”[1] describes an abstract API which defines the
RNIC’s behavior and its interaction with software. An implementation will then expose a
concrete API to applications. We describe the Verbs functionality relevant for this document.

2.1.1 RDMA Verbs

An RNIC receives instructions encoded as a set of operations defined by RDMA. Operations are
placed as work requests (WR) on a work queue (WQ), which can be either a send queue or a
receive queue. Together they form a queue pair (QP). A completion queue (CQ) is then bound
to one or more work queues. The RNIC posts work completions (WC), which are notifications
of completed work requests and state associated with WCs (i.e. success, error). Work requests
operate on a memory region (MR), which consists of one or more pages of physical main memory.
A memory region must be registered at the RNIC before any WRs may reference it. At registra-
tion time the contiguous virtual memory buffer is translated to the underlying physical memory
pages, and during operations the RNIC accesses physical memory directly. As this translation
is done only once at registration time, the pages of a MR must be “pinned” by the operating
system so that the virtual address to physical address mapping remains fixed and the operating
system does not e.g. swap them to disk. A steering tag (STag) identifies and grants access to a
registered memory region. Together with a tagged offset (TO), it specifies a memory location,
to which network I/O accesses have byte-level granularity. QPs and MRs are associated to one
another via a protection domain (PD). The RNIC enforces protection of memory regions for all
accesses passing through it by validating the STag and matching the protection domain before
a work request is executed on the memory region.

There are two fundamental types of operations: (a) one-sided and (b) two-sided operations.
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2 Background

One-sided operations allow two peers to communicate without involving the CPU of the remote
peer on the data path — the requests are handled entirely by the RNIC. Hence, the RNIC must
be capable of offloading the entire network stack. There exist two one-sided operations, read
and write. These one-sided operations require the remote peer to register a memory region and
advertise a STag to the local peer. Read and write operations then access memory locations
within the memory region with this STag and a tagged offset.

Two-sided operations also by-pass the CPU for data accesses, but require both peers to
jointly interact with message-passing semantics. For all types of operations, the caller may
optionally request a completion notification to be issued by the RNIC once the operation is
completed, indicating that a new work completion is located on the completion queue. However,
completion notifications are in effect hardware interrupts, which require CPU and operating
system involvement and thus incur additional latency. Like the one-sided operations, there exist
two two-sided operations, send and receive. The receiver places a receive work request on the
receive queue with a memory buffer large enough to place the incoming data. The sender places
a send work request on the send queue, which points to a send buffer. If the receiver is not yet
ready, the sender receives an error on the completion queue and must try again. Unlike with
one-sided operations, the receiver is not required to advertise an STag.

2.1.2 Implementations

The OpenFabrics Alliance’s “OpenFabrics Enterprise Distribution” (OFED) is a widely-used,
concrete API implementation of the RDMA Verbs specification and is made available for Linux
and Microsoft Windows. The OFED stack supports the three most common, RDMA-capable
networking technologies: Infiniband, iWARP for Ethernet, and RDMA over Converged Ethernet
(RoCE). In this work we will focus on iWARP. However, we do not have any transport-specific
dependencies.

2.1.3 iWARP Atomicity and Ordering Guarantees

iWARP is a standardized[2] RDMA protocol for IP, using either TCP, SCTP, or UDP as trans-
port. Although multiple lower-layer protocols are supported, the most commonly used is TCP.
TCP itself guarantees reliable data transport. iWARP then guarantees sequential arrival order-
ing of work requests within a work queue. Further, operations on memory have byte granularity,
and byte accesses are atomic. However, before the release of RFC 7306, iWARP did not support
atomic operations such as fetch-and-add or compare-and-swap, which are helpful for imple-
menting concurrent data structures and non-trivial synchronization mechanisms. Also, iWARP,
unlike Infiniband, does not provide any guarantees on the data placement order, meaning that
peeking into a memory buffer during an ongoing data transfer results in undefined behavior[2,
p. 38]. Both RStore, our distributed data store, and Carafe are designed keeping these limita-
tions in mind.

2.2 RStore

Carafe uses RStore[3] to store and access graph data. RStore is a general-purpose, distributed,
in-memory data store. Applications can develop, store, and share distributed data structures,
schemas, tables, data-blobs etc. in it. Similar to distributed, shared memory, RStore does not
interpret or impose any structure on the stored data. This avoids the overhead of the implicit
I/O operation synchronization associated with data structures. However, unlike distributed
shared memory, RStore is not designed to provide a cache-coherent memory extension to run
applications transparently on a cluster. The authors state that RStore is built on two key design
principles: (a) “decouple resource allocation from its abstraction binding”, in other words ma-
nipulating, multiplexing, and recycling expensive memory and network resources independently
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2.2 RStore

Figure 2.1: Design and Components of RStore.

of the provided storage abstraction, and (b) “keep the I/O path thin and fast”, where on the
I/O path data is striped across multiple servers. In this section, we give an overview of RStore’s
design and describe its inner workings relevant to our work.

2.2.1 Components

RStore is comprised of three main components: one master, one or more memory servers, and an
arbitrary number of clients (in the following chapters of this document, we will refer to these as
the RStore master, RStore servers, and, if referring to the RStore component embedded within a
client application, RStore clients). The master is a logically centralized entity for arbitration of
resources and storage of system-wide metadata. Data is distributed and stored on the DRAMs
of participating memory servers. Their primary responsibility is to allocate and prepare DRAM
buffers to be accessed by RStore clients. Clients are applications that interface with the RStore
API made available as a library. Carafe is an RStore application that uses its API to store graph
data in it. Figure 2.1 captures the interaction among these components.

2.2.2 Abstractions and API

RStore provides a flat, 64-bit byte-addressable storage abstraction called RStore namespace
(NS) or just namespace. A namespace is associated with a globally unique identifier string, i.e.
its name, which is given by the client when creating a namespace. A new namespace can be
created by calling create() on an RStoreMaster object. Namespaces are globally visible and
accessible. An existing namespace is retrieved by calling get namespace() with a name. A
namespace object, as returned by the get namespace() call, can be made ready for storage by
calling join namespace() on it. RStore clients can create, join and allocate storage capacity in
multiple namespaces. An allocated storage region is identified by a globally visible (through the
master) 〈address, length〉 tuple, called an RStore address (raddress) object. Allocated raddress
regions are physically served by DRAM from multiple memory servers for storage. Multiple
clients can access the same raddress region. Carafe uses separate namespaces to store graph data
(e.g. vertices, adjacency lists) and computational state. Examples of latter are communication
messages or synchronization states. These namespaces are identified and accessed by multiple
clients in a distributed way using their meaningful string identifiers.

RStore’s API provides a familiar memory-mapped I/O framework (mmap() and friends),
through which applications can allocate, map, read, and write remote memory at byte granular-
ity. RStore adheres to the separation philosophy of RDMA and provides separate API calls to
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2 Background

setup and access storage resources in a distributed setting. This separation enables RStore to
hide the low-level complexities of the RDMA Verbs interface behind a higher-level API, while
retaining and passing through RDMA’s high performance to applications. Three explicit API
calls, namely reserve(), alloc(), and map(), constitute the distributed control path in RStore.
They allocate resources and create states on memory servers, the master, and clients, respec-
tively. Calling reserve() with a size value, given in bytes, on the namespace object instructs
the master to prepare memory on the servers. The alloc() call, which also takes a size value,
stitches together prepared memory on the servers and returns it as an raddress object. Finally,
the remote memory is accessed by first calling map() on the valid raddress, and then subse-
quently calling the data operations read() and write() on it. Read and write calls are part
of the fast data path. For calls involving resource allocation, either in terms of memory or net-
work resources, converse calls exist to free the allocated resources. Carafe’s storage API, which
respects the separation philosophy, is built upon the RStore API and abstractions. Carafe’s
API provides high-level calls for common graph access patterns, such as sequential and random
vertex access or linear adjacency list scans, while implicitly managing resources in RStore in an
efficient way.

2.2.3 Distributed Memory Management

DRAM storage is managed internally in a granularity of chunks. Each chunk physically consists
of one or more memory pages located on a memory server. The master tracks free chunks in a
free chunk list, allocated chunks in a per-namespace allocated chunk list. A list of free chunks,
chunks allocated to raddress regions, their access permissions, mapping types, active clients, and
namespaces created, is maintained as system metadata at the master. Clients can allocate, map
and access raddress regions of any size in any namespace. Hence, a namespace contains multiple
raddress regions, which themselves consist of one or more chunks with their location-to-chunk
mappings.

Storing and accessing data in RStore are multi-step processes. First, an application must
reserve enough DRAM capacity by calling reserve() on a namespace object. The call issues an
RPC from the client to the master, which checks the free chunk list for the requested memory
size. If found, the call returns immediately. Otherwise, the master chooses a number of memory
servers and issues RPCs to them asking for memory allocations. Upon receiving a reserve()

RPC call from the master, memory servers allocate and register chunks of DRAM to an RDMA
device and communicate RDMA credentials — namely STags, addresses and lengths — back to
the master. The master adds these chunk credentials, together with the memory server’s IP, to
its free chunk list. The current implementation uses a primitive round-robin policy to uniformly
distribute the load.

Second, an alloc() call issues another RPC to the master, which stitches together chunks
from the free list to create a new contiguous memory region in the namespace. This globally
visible mapping between an raddress region and memory chunks is created and stored at the
master. The newly created raddress region together with its chunk locations are returned to
the client as the result of the alloc() RPC. A previously allocated valid raddress region object
can be initialized by calling initialize address() with an address and length on it. Upon
receiving an initialization RPC, the master looks up and returns the raddress-to-chunks and
chunk-to-location mappings together with other metadata to the client as a return value for the
RPC. This return value is used to initialize the raddress object on the client side. The master
additionally stores a reference counter for each namespace to avoid freeing the mapped chunks
while these are still in use. Both alloc() and initialize address() atomically increment the
reference counter, destruction of an raddress object atomically decrements it. Atomicity implies
that these operations are globally serialized when called on the same namespace.

Lastly, a valid raddress object requires a local mapping, created by a map() call, before the
I/O operations. Similarly to the mmap() call, a local mapping returns a local DRAM address,
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2.3 Graph Theory

which is made RDMA-ready by the RStore client library. Clients use this address for staging and
modifying their data. There is an equivalent unmap() call. RStore performs resource caching
and sharing to hide the high control setup cost for repeated accesses. The RStore client library
manages and caches RDMA-ready memory using a user space buddy allocator. RDMA objects,
e.g. connections to memory servers, event channels, or I/O queues, are shared between multiple
mappings.

The reserve() and alloc() call separation decouples the former call’s control of memory
and network system resources from the latter call’s binding of resources to the abstraction.
That is, setting up the RDMA data path via the RDMA control path and allocating memory
are no longer directly coupled to the mapping of an raddress to chunks and their placement
within a namespace. This allows RStore to pre-allocate server memory, and reuse the memory
after it is deallocated by the client. Likewise, separating the initialize address() and map()

calls means that the metadata necessary for accessing remote memory regions and the memory
buffers needed to represent the remote memory locally are independent of one another — the
raddress metadata can be cached and used multiple times to map the segment it references,
while one and the same local memory buffer can be reused for a new mapping once the previous
one has been unmapped. Furthermore, the map() call, and by extension the unmap() call, are
completely local. If an application moves all calls to initialize address() out of its fast path,
the fast path will involve no network operations whatsoever. Additionally, once the application
has reached its peak memory footprint, mapping predominantly reuses buffers, avoiding the
costs of buffer creation and destruction. The efficient management of resources, as described
above, is enabled by the key design principles of RStore, which are reflected in its API. The
design of the operations beneath the API ties together all of these factors. In a similar spirit,
Carafe internally caches RStore objects and associated metadata to avoid network round trips
and minimize the access latencies to graph objects.

2.2.4 I/O Operations

A mapped raddress object supports read() and write() calls within the mapped memory
region. These calls constitute the fast and thin I/O path of RStore. They do not involve any
resource allocations anywhere in the system and are translated to one-sided RDMA read and
write operations for zero-copy network transfers. These properties are key to achieving high
performance in a low-latency, high-bandwidth environment. The byte-granular nature of I/O
operations in RStore enables Carafe to calculate, index, and access graph data, such as adjacency
list access for any random vertex, with utmost efficiency.

I/O operations in RStore do not provide any atomic or global ordering guarantees (as in
iWARP, see section 2.1.3). Concurrent graph I/O operations in Carafe built on them also
do not provide any global ordering guarantees. High-level frameworks on Carafe, for example
C-Pregel, are built by exploiting the fact that accesses in a graph-parallel framework are split
and ordered around a global synchronous barrier (see section 5).

2.3 Graph Theory

A graph is a mathematical concept used to concisely describe how a set of objects are inter-
connected. A graph is formed out of two types of components, vertices and edges; each object
is represented by a vertex, and each connection between two objects is represented by an edge.
More formally, a graph consists of two finite1 sets, one of vertices and one of edges, denoted as
G = (V,E). The vertices u, v ∈ V at each end of an edge are called the edge’s endpoints, and are
designated adjacent to one another (alternatively: u and v are neighbors). If not mentioned oth-
erwise explicitly, we assume that adjacent vertices are connected by precisely one edge. Whereas

1We do not consider infinite graphs in this document
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a vertex may be an endpoint of an arbitrary number of edges, every edge has exactly two end-
points. Going from one endpoint of an edge to the other endpoint is to traverse an edge. If an
edge ed ∈ E is traversable in only one direction, thus one endpoint is its head and the second its
tail, the edge is a directed edge and is denoted as the ordered pair ed = (u, v) of its endpoints.
Otherwise, if the edge eu ∈ E is traversable in both directions, the edge is an undirected edge
and is denoted as the unordered pair eu = {u, v} of its endpoints. The endpoints of a directed
edge have different views of it: from the perspective of ed’s head u, it is an outedge; but from
the perspective of its tail v, it is an inedge. By definition, all edges in a graph are of the same
type, either directed or undirected, and hence the graph is then a directed graph (digraph) or an
undirected graph, respectively. The number of endpoints a vertex v represents is denoted in the
vertex’s degree deg(v). In a digraph, the degree is further separated into the outdegree deg+(v)
and the indegree deg−(v), for outedges and inedges, respectively.

2.3.1 Power-Law Graphs

Graphs are often categorized into graph families by common properties, e.g. the degree distri-
bution of their vertices. In this document, we focus on one such family: power-law graphs.

In a power-law graph (power graph), the degrees of vertices follow a power-law probability
distribution. As an illustration we consider people and their friends in an online social network.
There are many people (vertices) with a small number of friends (degrees). The higher the
number of friends, the lower the number of people with that many friends. Only very few
people, for example celebrities, have an extraordinarily large number of friends.

The probability mass function of the power-law distribution is defined[4] as:

p(x) ∝ x−α

where x is a vertex degree, p(x) is the probability of a vertex having that degree, and α > 0 is
a constant deciding how fast the probability declines with growing x.

Power-law graphs are relevant as social, web, and many other real-world graphs follow a
power-law degree distribution[5, 6, 4].

2.4 Graph Data Structures

When storing large graphs in a data structure, we pursue two goals: minimizing space usage
and minimizing access time. Many graphs, such as power-law graphs, are sparsely populated
with edges — storing them quickly becomes inefficient if the format does not adapt to sparsity.
Simultaneously, access to a particular element within a graph should also be efficient; ideally,
elements are indexed.

As so often, the challenge is to unify both goals in a single data structure. There are a range
of fundamental storage formats with different properties and trade-offs to evaluate: the storage
space complexity, and the time complexities of iterating the neighbors of a vertex, querying for
vertex adjacency, adding and removing vertices or edges. The adjacency query assumes that
the source and destination vertices are known, but the edge itself is unknown. Note that the
following descriptions assume arrays as underlying storage; for other data structures the time
and space complexities may be different.

2.4.1 Incident Matrix

The incident matrix is an inefficient approach to storing a graph. Nevertheless, it is a good
demonstration of what not to do.

An undirected graph is represented as a two-dimensional matrix with |V | rows and |E|
columns. The rows represent vertices, the columns represent edges. Each matrix entry stores
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a Boolean value, which is true if the vertex is an endpoint of the edge (called incident in this
context), and false otherwise. Directed edges can be represented by adding a sign flag to each
entry for designating an incoming or outgoing edge, making the incident matrix oriented.

An incident matrix thus uses at least |V |·|E|8 bytes of space. An undirected edge is incident to

only two vertices, meaning this structure wastes at least |V |−28 bytes for every edge stored.

Neighbor iteration involves iterating the vertex’s row to find all non-zero entries. Then the
column of each non-zero value is iterated to find the second non-zero entry of the column, which
specifies the neighbor. All of this is in O(|V | · |E|) time. An adjacency query is effectively a
neighbor iteration which stops when the queried neighbor is found. Adding a vertex uses Ω(|V |),
adding an edge Ω(|E|) time in the best case — that is, when expanding the matrix can be done
by simply appending a row or column. This is not always feasible, and the whole matrix must
be reallocated and copied. Thus, the worst case for add (and remove) operations is O(|V | · |E|)
time.

2.4.2 Edge list

Improving on the incident matrix is the edge list. Instead of taking a vertex-oriented approach,
it views the graph as a list of edges in no particular order. Each edge is explicitly represented as
a 〈source vertex, destination vertex〉 tuple and can be either seen as directed or undirected. Note
that an edge list cannot store vertices without edges, although this limitation can be worked
around by introducing a placeholder (or “dummy”) vertex.

The space required to store a graph is in the order of O(|E|). Adding an edge is trivial and
takes O(1) (amortized) time. Neighbor iteration, neighbor querying, and removing an edge all
involve iterating through the edge list, taking O(|E|) time. Removing an edge means to first
find it and then to fill the gap it leaves, totaling in O(|E|) time. Adding and removing a vertex
are equivalent to adding or removing an edge, respectively.

2.4.3 Adjacency Matrix

The adjacency matrix is another way of improving upon the incident matrix. The adjacency
matrix is a two-dimensional, square matrix with |V | rows and columns. The rows represent
source vertices and the columns destination vertices. Each matrix entry stores a Boolean value,
which is true if the two vertices are adjacent to one another, i.e. there is an edge connecting
them. Alternatively, the Boolean value can be replaced by the edge’s weight, where a zero
weight edge stands for “not adjacent”. When storing an undirected graph the adjacency matrix
is symmetric — storing it as a triangular matrix suffices.

The space required to store a graph is in the order of O(|V |2). This is especially efficient for
dense graphs, but quickly becomes inefficient for sparse graphs.

Neighbor iteration involves iterating a vertex’s row to find all non-zero columns, thus O(|V |)
time. An adjacency query is simply a lookup in the matrix and is in O(1) time. Adding
or removing a vertex is similar to the incident matrix’s case and is again in the order of the
matrix’s size, O(|V |2). However, adding or removing an edge is cheap, involving only a bit flip
and thus O(1) time.

2.4.4 Compressed Row Storage

The Achilles heel of the adjacency matrix is storing sparse graphs, as it converts sparse graphs
into sparse matrices. Storing sparse matrices is a well-known problem and many special cases
have storage formats tailored to them. One of these is the compressed row storage format (CRS).
With it storing sparse adjacency matrices becomes more efficient.

A CRS matrix consists of three vectors: the first vector stores non-zero entries representing
adjacencies, the second contains the column index for each of these entries, and the third rep-

9



2 Background

resents all rows and contains offsets into the first two vectors. Therefore, row index n holds
the index of the first non-zero entry of row n, at which position that entry’s column index is
stored in the column vector. Put another way, a CRS matrix is an array of pointers to arrays
containing 〈entry, column index〉 tuples.

Consider an adjacency matrix stored in CRS format. Space complexity is now in the order
of O(|V |+ |E|), which is much more efficient for sparse graphs. It still holds the O(|V |2) upper
bound from the adjacency matrix, but now includes some constant overhead to store indices.
Also, accessing entries include an overhead of one indirection, which is in constant time. Other
time and space properties are the same as with adjacency lists, described below.

2.4.5 Adjacency List

An adjacency matrix stored in CRS format carries unnecessary baggage; the existence of an
adjacency is already given when storing its column index, storing an additional Boolean is
superfluous. For this reason, the CRS format is reduced to an adjacency list. In the adjacency
list data structure a graph is represented as a vector of vertices, where each vertex includes a
list of other vertices adjacent to it. It naturally stores the outedges of a directed graph. To store
an undirected graph, each edge must be split into two directed edges, essentially converting the
undirected graph to a directed graph. Abstracting the graph format from the matrix-oriented
view has another advantage: the underlying arrays can be exchanged for another type of data
structure with different properties.

Retaining the assumption of arrays underlying the adjacency list, storage complexity is in the
order of O(|V |+ |E|).

Neighbor iteration is trivial; finding it involves a lookup of the vertex followed by a jump to
the neighbor list, for a total of O(|V |) time. As the neighbor list is contiguous, this operation
is very efficient. An adjacency query involves iterating neighbors until the one searched for is
found; this is again in O(|V |) time. Adding or removing a vertex means to resize the vertex
array, which takes Ω(1) time in the best case and O(|V |) time in the worst case. Adding or
removing an edge means to resize the adjacency list’s array. If all adjacency lists are stored in
one array, this takes between Ω(1) and O(|E|) time. If each adjacency list is stored in a separate
array, this takes between Ω(1) and O(|V |) time.

Considering the trade-offs involved, our design of Carafe stores graphs in the adjacency list
format. However, Carafe’s API is independent of the underlying graph data structure.

2.5 Graph Algorithms

To evaluate the Carafe framework, we have targeted two specific algorithms, sequential Dijkstra
and PageRank on the Pregel model (see section 2.6.1).

2.5.1 Dijkstra’s Algorithm

Dijkstra’s algorithm (Dijkstra)[7] solves the single source shortest path (SSSP) problem. The
single source shortest path is defined in Dijkstra’s original article as “finding the path of minimum
total length between two given nodes (vertices) P and Q”. This definition assumes that the
positions of the two given vertices in the graph are known and that finding one out of potentially
many shortest paths is sufficient.

On a high level, the algorithm uses the implication that, if a vertex R is on the minimal
path between P and Q, then the minimal path from P to R is also known. Thus the algorithm
performs a greedy search for all minimal paths from P until Q is reached.
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Let the distance of a vertex be the length of its minimal path from P , and let the vertex on
the minimal path immediately preceding a vertex R be R’s parent. Then Dijkstra’s algorithm
works as follows:

1. Initialize all vertices in the graph to have distance ∞, but P to have distance 0. Further,
mark all vertices as unvisited, and place P into a set and name it the active set.

2. Remove the vertex with smallest distance from the active set and let it be the current
vertex.

3. If the current vertex is Q then stop.

4. If it is marked as visited, repeat from step 2. Else, mark the current vertex as visited.

5. For each neighbor N , let d be the sum of the current vertex’s distance and the distance
between the current vertex and N .

6. If d > N ’s distance, inspect the next neighbor. Else, let d be N ’s new distance, let the
current vertex be N ’s parent. If N is not in the active set, add N to the active set. Else,
update N ’s position in the active set to match its decreased distance.

7. Repeat from step 2.

The operations of adding a vertex to, removing the vertex with smallest distance from, and
updating the position within the active set make up a significant portion of the algorithm’s time
complexity. If implemented with a minimum, binary heap, and assuming the graph is stored in
an adjacency list, the algorithm’s worst-case time complexity is O((|E|+ |V |) log(|V |))[8, p. 199].

The algorithm does not directly output the minimal path between P and Q, but rather the
set of minimal paths from P to all visited vertices. Finding the minimal path to Q is most
efficiently done by backtracking from Q, that is following the parent references from Q until P
is found. Backtracking is in O(n) time, where n is the minimal path’s length.

2.5.2 PageRank

PageRank is an algorithm to calculate a homonymous metric for measuring the relative impor-
tance of a vertex within a graph. Intuitively, the importance of a vertex v is defined as the
likelihood that a random sequence of edge traversals originating from a randomly chosen start
vertex will come across v. An inedge from a highly-ranked vertex carries high value, unless the
highly-ranked vertex has many outedges.

PageRank formalizes this intuition as[9]:

R′(u) = c
∑
v∈Bu

R′(v)

Nv
+ cE(u)

where u is a vertex, R′ is a vector of PageRanks, Bu the set of vertices with outedges to u, Nv

the number of outedges of v, c a normalization factor, and E a vector of constants. From the
formal definition it follows that PageRank is an iterative algorithm converging to a solution.

2.6 Graph Processing Models

Graph processing models provide structural and operational primitives. The structural prim-
itives abstract data into a graph. The operational primitives access and modify the graph
structure or data associated with the structure. Finally, graph processing models define an
execution order that facilitates the combination of these operational primitives into meaningful
algorithms or queries on the graph.
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There are two perpendicular ways of categorizing graph processing models. The first splits
models by the type of queries and algorithms they handle and the source of mutability of the
data, i.e. internal or external to the model’s computation. The second splits by the model’s view
on the graph; the granularity with which a graph is passed as input to a computation is defined
by the view. The view is either graph-, vertex-, or edge-oriented. If the view is graph-oriented,
the entire graph is passed as input to the computation. As such, it has a global view of the
graph and can access any component at any time. In contrast, if the view is vertex- or edge-
oriented, the computation is divided into units and only a single component at a time is passed
to a computational unit as input. In such a model, the model defines a mechanism for units
to communicate, either based on message passing or shared memory and an (partial) order in
which they are executed.

Models are further differentiated as online and offline models. Online models handle inter-
active queries on an often live, constantly changing graph. They come with query-oriented op-
erational primitives which are suitable for substituting or building high-level, relational queries.
As they operate on live data, their main challenges are providing consistency guarantees and
low-latency. Furthermore, online models are often graph-oriented as to allow computations to
operate on the whole dataset. Offline models cater towards batch processing of mostly static
data, in which all changes to the data originate from the computation being executed. They
include operational primitives targeted at distributed graph algorithms operating on graph com-
ponents individually, and thus have a vertex- or edge-oriented view. They are also called graph
parallel models due to their highly concurrent nature and their primary challenges are distributed
synchronization and high throughput.

Offline models are subdivided into synchronous and asynchronous processing models, based
on their communication model. The synchronous model breaks graph-parallel computation into
discrete, global iterations. In each iteration, every computational unit is executed once, during
which time it may have outgoing communications to other units, which are passed as input in a
defined, subsequent iteration. The iteration is concluded with a barrier synchronization across all
units. Because the order of unit execution and timing of inputs are strictly defined, synchronous
models are deterministic. Additionally, because of the global barrier between the production and
consumption of all communications and the single barrier in the model, a synchronous model is
deadlock- and data-race-free[10]. In contrast, the asynchronous model is entirely event driven.
An implementation-defined system scheduler decides when to execute a computational unit. A
unit is only scheduled for execution if it receives a communication as new input, processes it, and
then returns control to the system scheduler. The scheduler then synchronizes event production
and consumption. Varying scheduler implementations and real-world factors such as variance
in network latencies induce non-determinism in the execution of these models.

Although every synchronous problem can be reduced to an asynchronous one with the help
of a synchronizer, and thus the asynchronous model is more general than the synchronous
one, synchronizers come at the expense of time and message complexity. Depending on the
fundamental assumptions made by an algorithm and the properties, e.g. the convergence rate it
exhibits when run in a particular model, choosing the synchronous or asynchronous model over
the other can have a big impact on runtime in practice[11].

2.6.1 Pregel Model

The Pregel model is a synchronous, vertex-oriented graph processing model with message passing
communication semantics and is inspired by the Bulk Synchronous Parallel model (BSP)[12].
It was introduced by Google’s “Pregel” graph processing system[10] and has seen wide-spread
recognition in graph processing research.

In the Pregel model, the sequence of iterations of the synchronous computation are named
supersteps. Computation is seen from the perspective of a vertex, thus, “a vertex computes”
means that the system calls a method on the vertex. Each vertex can store and has access to
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private, mutable storage. Further, each vertex can be in one of two states, active or inactive.
Initially, all vertices are in active state. In each superstep k, a user-defined method is called
individually on each active vertex in the graph, concurrently. When executed, a vertex receives
the messages sent to it from the previous superstep k−1, and it sends messages to other vertices
along its outgoing edges. These sent messages are delivered in the next superstep, k+1. During
method execution, a vertex can set itself to inactive state by explicitly calling halt. A vertex is
reactivated if a message destined for it arrives, in which case it must explicitly deactivate itself
again. If, and only if, all vertices are simultaneously in inactive state and no messages are in
transit, the system terminates. The output of the computation is the set of values each vertex
explicitly defines as output, conjuncted over all vertices.

Pregel API The centerpiece of the Pregel API is the abstract Vertex class and its virtual
compute() method. A Pregel application is implemented by subclassing Vertex and overriding
compute(), which is called in every superstep. From within compute(), the current superstep
number can be obtained by calling superstep() on the current object. The private vertex
storage is readable with the get value() and mutable with the get mutable value() methods.

Incoming messages are passed to the compute() method via an iterator given as argument.
Though the order of the messages within the iterator is unspecified, the iterator is guaranteed
not to contain duplicate messages and messages are guaranteed to arrive. Outgoing messages
are sent by calling a send message to() method on the current object, where each message
must specify one destination, given as a vertex ID. The ID of the current vertex can be ob-
tained by calling get id(), the IDs of neighbors from get outedge iterator(). As it is
a common pattern to send the same message to all neighbors, the API offers an additional
send message to all neighbors() method.

To reduce the overhead of messaging, the application can optionally implement a combiner. A
combiner is an optimization for algorithms which use a commutative and associative aggregate
function (e.g. sum, mean, count, max, etc.) on the values passed as messages. It combines
values in multiple messages to one with the aggregate function. This reduces the number of
messages, saving both memory to store messages and network bandwidth to transmit them. A
combiner is implemented by subclassing the abstract Combiner class and overriding its virtual
combine() method.

In addition to the described functionality, the Pregel API supports global aggregate functions
and structural graph mutation, which are not discussed in further detail in this document.
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3.1 Vision and Design Goals

Graph processing is an I/O intensive application with very little computation done per graph
component. Low latency and high throughput access to the graph are key for high performance.
However, large graphs necessitate distributed storage of the dataset, making high I/O perfor-
mance challenging. The high-performance RStore remote data store enables fast remote data
access, but requires the data and control path separation to be passed up through the software
stack to the application to reap the data store’s full performance gains. The separation limits
the design space, should the graph processing framework aim to take advantage of it — a further
design challenge.

Given these constraints, we envision Carafe to operate in a dense, rack-scale deployment
with many cores and multiple high-speed, RDMA-capable network links per machine. The
dense deployment minimizes the latency costs associated with distance, network switches, and
routers. Density also fosters tighter integration of a machine cluster with multiple network links
per machine, scaling throughput beyond the capabilities of a single link. Finally, applications
are distributed and many cores give them further opportunity to parallelize the processing of
concurrent portions in their workloads.

Our design goals for Carafe are:

General, reusable abstraction Distributed, high-performance graph storage is useful for both
online and offline graph processing applications — they should focus on application-specific
logic and not be burdened by details on graph storage. Our abstraction should be flexible
to suit the requirements of both graph processing models by providing the high-level,
unbiased primitives for creating, reading, and modifying a graph and components thereof.

Distributed, uniform graph access Graph processing applications are distributed and parallel,
but for optimal performance they require input to be evenly distributable among pro-
cessing units along with minimal interdependencies to avoid network I/O. Unfortunately,
partitioning a graph to meet these constraints is an NP-hard problem. Instead, the system
should provide uniform access to the entire graph independent of the location the request
is coming from, making graph partitioning unnecessary.

Data and control path separation To extract maximum performance from the hardware, Carafe
must endorse the data and control path separation philosophy of RStore. The API should
expose the separation to the application, and resource allocation within the system should
be pushed onto the control path. The data path should remain fast and thin.

Data-copy and indirection avoidance Data copies and indirections inhibit performance and
should be avoided wherever possible. Accesses to both application data and internal
metadata should involve zero copies, placing data and accessing it directly instead.

To limit the scope of our work, we constrain Carafe to graphs with immutable structure. That
is, vertices and edges cannot be added or removed from the graph. Supporting all structural
graph operations would be difficult, since the fundamental graph data structures all impose
penalties on at least one such operation. In large graphs these penalties quickly become expen-
sive, necessitating more elaborate structures which in turn impose penalties on simple accesses.
In this work, we focus our efforts on fast computation and data access.
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Class Method Call Signature Description

C
a
r
a
f
e
G
r
a
p
h

create(namespace, graph name, |V |, |E|) Creates a new graph with the given size in RStore
load(namespace, graph rstore address) Loads an existing graph from RStore
unload() Unloads the graph locally
destroy() Destroys the graph in RStore
get vertex by id(vID, vertex handle&) Initializes the vertex handle to the given vertex ID
iter from to(begin vID, end vID) Returns a mutable vertex iterator pair from begin ID to end ID
citer from to(begin vID, end vID) Returns a constant vertex iterator pair from begin ID to end ID

V
e
r
t
e
x
H
a
n
d
l
e

get id() Returns the vertex’s ID
get name() Returns the vertex’s name
get properties() Returns a reference to the vertex’s properties
cbegin() Returns a constant adjacency list iterator at beginning
cend() Returns a constant adjacency list iterator at end
map()

only for random access

Map vertex into local memory
unmap() Unmap vertex
read() Read vertex from RStore
write() Write vertex to RStore

Table 3.1: Carafe API

3.2 Abstraction and API

A graph is represented as a CarafeGraph object in a directed, adjacency-list-alike format. It can
be created by passing a handle to a file containing the raw graph data. The data is imported and
placed into distributed memory and a globally accessible address is passed back. Following this,
the CarafeGraph can be initiated on other machines in the cluster by passing them the address.
Each vertex in the graph is assigned an identifier, or vertex ID, by the system. IDs are zero-
based and contiguous, and there exists a special, invalid vertex ID for use by algorithms, e.g. as
sentinel. Vertices contain a vertex name, which is specified in the imported file, and a property
map, which contains run-time data from algorithms and related contextual information. A
vertex is accessed by obtaining a handle object to it, the VertexHandle. There are two distinct
ways of obtaining VertexHandles, as there are two fundamentally different types of accessing
vertices: sequential and random. The access is sequential if it iterates over multiple vertices in
the order they are stored internally. If the application imposes another access order, the access
is random. To support both as efficiently as possible, the abstraction provides two specialized
access modes illustrated in figures 3.1a and 3.1b:

Sequential access From the CarafeGraph a begin and an end iterator are obtained. The begin
and end can be specified freely by passing two vertex IDs, constrained only by the graph’s
bounds. Between the iterators is a range of vertices, where the end iterator is after the
range and may not be dereferenced. The system assumes that the whole range will be
accessed, and will optimize for the range given. On dereferencing the begin iterator, it
passes back a reference to a VertexHandle belonging to the iterator. The data referenced
by the VertexHandle can be accessed immediately without any further steps. The next
vertex is accessed by incrementing the begin iterator, at which point the VertexHandle

becomes invalid. When the begin iterator is after the last vertex of the range, it is equal
to the end iterator and dereferencing it is invalid.

The API distinguishes between mutable and constant iterator types. Whereas the
VertexHandle of a mutable iterator is also mutable, i.e. can be written to, the con-
stant iterator and its handle are read-only. The distinction allows the system to optimize
read-only accesses.

Random access First, a VertexHandle object is constructed. It, together with a vertex ID, can
then be passed to the graph object for initialization. Unlike in the sequential access case,
the abstraction grants full control over the RStore-data path: the VertexHandle provides
map(), unmap(), read(), and write() functionality. Thus, before vertex data is accessed,
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(a) Sequential access: (1) Create a
CarafeGraph; (2) Get a vertex iter-
ator pair from the CarafeGraph; (3)
Dereference it to get a VertexHandle; (4)
Get an adjacency list iterator pair from the
VertexHandle; (5) Dereference it to get an
adjacency

(b) Random access: (1) Create a CarafeGraph;
(2) Create a VertexHandle; (3) Initial-
ize the VertexHandle by passing it to
CarafeGraph, then map() and read(); (4)
Get an adjacency list iterator pair from the
VertexHandle; (5) Dereference it to get an
adjacency

Figure 3.1: Application Workflow in Carafe

the vertex must be mapped and read. If modified, it must be written and after use must be
unmapped. After unmapping, the VertexHandle can be re-used to access another vertex.

With a VertexHandle in hand, the outedges of the vertex can be accessed analogously
to sequential vertex access: begin and end iterators are obtained from the VertexHandle.
Dereferencing the begin iterator logically traverses the edge and gives back the vertex ID of
an adjacent vertex. The next outedge is accessed by incrementing the iterator. Outedges
are listed in an unspecified order, giving the system freedom to optimize.

Alternative design In an alternative, imperative design, an iterator is initialized similarly to a
VertexHandle: for a vertex iterator by passing it to the CarafeGraph together with a vertex ID,
for an edge iterator by passing it to a VertexHandle. An edge has an edge ID and is represented
by an EdgeHandle, analogously a VertexHandle.

Arguably this could be a better design as it eliminates the vertex-centricity of our chosen
one, allowing for edge-centric applications. However, we argue that the object-oriented design
is equally powerful, and could be extended with features such as EdgeHandles without compro-
mising the design or impacting performance. To this end, imperative versus object-oriented is
a matter of taste.

3.3 Identifying Vertices

To uniquely identify a vertex within the system, every vertex requires an unambiguous identifier.
Usually, the file defining the graph also defines vertex IDs for the same purpose in the scope of
the file. Henceforth, we will refer to the vertex ID in the system by vertex ID, and the vertex
ID in the file by vertex name. For practical purposes, both the ID and the name are assumed
to be non-negative integers.
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Besides being unique, a key requirement for the ID is that it should allow the system to find the
corresponding vertex with minimal overhead. However, input and output must be meaningful,
thus given as vertex names. From the perspective of an algorithm implemented on top of the
API, this discussion is irrelevant — only the graph structure matters, which is independent of
how a vertex is called, giving us leeway in designing a naming scheme. This poses the question:
should the vertex ID and name be identical, or does a better alternative exist?

Let the vertex ID and name be identical in design (1), and in design (2) the system generates
an ID for every vertex with a bijective mapping to the vertex name and a translation function
must be called explicitly when the vertex name is required. Clearly, design (1) does not need
a mapping for input and output. But it does not correlate in any way to the system’s internal
vertex data structure. Depending on the choice of data structure, it becomes necessary to
translate between a vertex’s location and its ID. Design (2) is more flexible. For instance, the
system has the freedom to choose the naming scheme to suit its internal structure, potentially
avoiding a layer of indirection when accessing a vertex. Alternatively, the system could imitate
design (1), and the translation function would be the identity function. We argue that vertex
lookup during computation is much more frequent than input and output, thus translating input
and output is a small price to pay for the additional flexibility given to the system in design (2).

There is a second choice to make: should the vertex IDs be contiguous or non-contiguous? A
contiguous naming scheme is an additional guarantee and therefore less flexible. For instance,
if the graph structure is mutable, removing a vertex would be difficult to handle as it would
leave a “hole” in the list of vertex IDs. Since the primary focus of this work is performance,
we constrain Carafe to graphs with immutable structure. On the positive side, contiguity is
practical for performing arithmetic on vertex IDs, e.g. when setting a range of vertices for the
begin and end iterators, the end’s vertex ID can be found by a simple addition. For our system
with the stated constraints, we have chosen to sacrifice some of design (2)’s flexibility for the
convenience of contiguous vertex IDs.

3.4 Graph Layout and Storage

High-level graph data structure As explained in section 2.4, choosing a graph data structure
comes with many trade-offs. When targeting large graphs, however, storage size quickly becomes
the predominant consideration. Given millions or even billions of vertices and edges and the goal
of storing sparse, power-law graphs, non-linear space complexity is infeasible, and the constant
factor plays a significant role as well. Although now only a consideration of second priority,
time complexity for operations on the graph is also important. As not all operations are equally
important, the most frequently used can be prioritized. In the case of Carafe, these are finding
a vertex, and vertex and neighbor iteration.

There are only two fundamental data structures with linear space complexity, the adjacency
list and the edge list. Although the latter appears to have slightly better properties as it is not
dependent on the number of vertices, the alleged advantage comes from not being able to store
vertices without at least one edge, which is actually a disadvantage. In practice the former has a
lower constant factor, being almost twice as compact. The adjacency list’s second advantage is
in its optimal time complexity for the stated key operations, and in its adaptability to partially
trade these off for bolstering other operations, if desired.

Considering all of the above trade-offs, we choose the adjacency list to be Carafe’s underlying
data structure.

Storage medium An adjacency list is only a method for organizing the components of a graph;
beneath it must be a supportive data structure to store the components. This supportive data
structure ultimately depends on the storage medium. As per the design goals, the graph must
be stored distributedly and globally accessible, and the assumption of fast remote access must
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be fulfilled. In a design (1), Carafe comes with its own distributed storage solution. However,
designing a distributed storage framework is by itself a non-trivial undertaking, calling for an
evaluation of existing frameworks. A design (2) builds on an existing distributed key-value store.
Vertex IDs serve as keys, the value being the vertex’s adjacency list, property map, and other
data associated with the vertex. A last design, design (3), uses an existing distributed in-memory
storage framework as represented by RStore (see section 2.2), which emulates a byte-addressable
array and makes no assumptions on the data layout. While design (2) is convenient in that it
is content-addressable, current key-value stores violate the data and control path principle[3].
A further drawback is that key-value stores offer little or no control over data locality, limiting
our freedom in design and implementation. In design (3), RStore performs no data caching,
only RDMA resource caching. As its distributed memory is byte-addressable it gives full control
(and full burden) of data layout, and hence locality, to Carafe.

We choose design (3) because it provides us with the desired flexibility in design and imple-
mentation, but at the same time spares us the complexities of implementing our own distributed
storage solution.

Low-level supportive data structure Given a byte-addressable memory abstraction, the ad-
jacency list requires an underlying data structure capable of supporting the key operations of
vertex lookup, and vertex and neighbor iteration efficiently on a remotely stored graph. As
these operations include both sequential and random accesses, the structure must be efficiently
tolerant of both patterns while holding only a small part of the graph in local memory. And
given the goal of large graph storage, the structure must retain the spacial efficiency of the
adjacency list with only minimal overhead.

The most basic design (1) is based on arrays. Because every vertex’s adjacency list potentially
has a different length, concatenating the vertex’s adjacency list to the vertex makes the vertex
un-indexable, effectively degenerating it to an unordered list. Therefore, the vertices must be
stored separately from their adjacency lists, where each vertex is located at the position given
by its ID. The adjacency lists are stored in a separate array; each vertex holds a reference to its
start together with its size. Inside an adjacency list, the individual adjacencies are unordered.
A second design (2) stores vertices in a B+tree and stems from B+trees’ use in file and database
systems. The adjacency lists are stored as in design (1). Linked data structures, such as linked-
lists or binary trees, and hash maps are not considered due to their poor locality for accessing
a range of given vertex IDs, requiring excessive remote accesses. We do not consider resizing
operations. A third design (3) builds on these ideas, but segregates the arrays into multiple
blocks of fixed size. Effectively, design (3) is a 2-level hierarchy of arrays.

Design (1) works well if vertex IDs are contiguous. Random accesses are efficient, as they only
require a single access to the structure. Sequential accesses are also efficient, as data can be
pre-fetched; any arbitrary range of given vertex IDs is stored contiguously, as is the adjacency
list. Accessing the adjacency list of a vertex requires two accesses, one to the vertex and one
to the adjacency list. In design (2), vertex IDs can be arbitrary, although lookups within a
node effectively become indexed lookups if IDs are contiguous. A B+tree is advantageous over
a B-tree as internal nodes contain only indices, allowing for higher order nodes to make the
tree flatter, and sequential accesses can be accelerated by linking and pre-fetching leaf nodes.
Compared to design (1), the B+tree allows for tuning the node size to a multiple of RStore’s
internal block size, which avoids external fragmentation. The fixed-size nodes can be cached,
contrary to arbitrary segments of array data, caching of which leads to an infeasible amount
of metadata. Keeping nodes close to the root and the root node itself in cache is feasible,
making many random accesses possible in one or two remote accesses. However, a B+tree is
considerably more complicated to implement than a flat array, requires more remote accesses,
and degrades the O(1) vertex lookup complexity of the flat adjacency list data structure to
O(log(n)). A compromise between these first two designs is design (3). The array structure
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requires contiguous IDs, and is indexable without intermediate lookups — the block and offset
are calculated by integer division. Sequential accesses have locality as in arrays. Fixed-size
blocks are cacheable and pre-fetchable as with a B+tree. We argue that for an immutable,
remote graph structure, design (3) is an optimal solution.

Vertex Property Maps Alongside the graph structure, per vertex property maps must be
stored. Each of them is a logical part of the vertex, and is mutable in the sense that the map’s
fields can be modified. There are two ways to store them: either they are embedded in the
graph structure from above or they are stored in a separate data structure alongside the graph,
referred to as internal and external property maps.

Internal property maps have a locality advantage compared to external maps; when a vertex
is loaded from remote storage, the same access can also load the property map. They are
also simple to implement, being another field in the vertex. On the flipside, they have three
significant drawbacks. First, embedding property maps into the graph structure fixes the map’s
size, making the design inflexible to accommodate different contexts and requiring a re-import
of the whole graph to switch contexts. Second, the embedded map design does not allow for
multiple contexts to exist simultaneously; only one can be embedded in the graph structure at
any one time. Third, an algorithm may not access the property map on each vertex access,
instead only traversing the graph structure. In that case, binding the property map to the
graph is inefficient, leading either to non-contiguous accesses or to superfluous data being read
or written.

External property maps are free of these three drawbacks. This comes at the cost of managing
the property maps in their own data structure, e.g. stored in the same way as vertices. Touching
a property thus requires at least one more remote access, depending on the data structure design
chosen.

We argue that in the short term, internal property maps are sufficient. But in the long term,
when this project reaches maturity, their drawbacks outweigh their advantages, and an alternate
design must be considered.

3.5 Caching and Pre-Fetching Strategy

In a scenario where data is held in a remote location, access to said data is by definition slower
than to data held locally. A common method to reduce the number of such remote accesses is
to predict how data will be accessed in future, made possible by spatially and temporally local
access patterns. If the data is being read, a previous read to the same data can be retained
locally — this is read caching — or pre-fetched ahead of time. If the data is being written,
multiple writes can be cached and then written back in one go — this is write caching.

In offline graph processing models, such as the Pregel model, the dataset is divided into
multiple partitions. The partitions are split up among multiple machines for processing, where
each machine “owns” one or more partitions. The owner has exclusive access to its partitions.
This allows for a better approach to caching. If the owned partitions fit into local memory, the
whole partition can be pre-fetched once and subsequently read-cached. Write caching is possible,
too, but if the model does not require synchronization, there may not be a pre-specified time
when the write-back must happen. In this case the system must choose a suitable time for
writing back.

Online graph processing models are, in their pure form, more difficult to cache than offline
models, as the underlying data may change while the computation is ongoing. However, with
our constraints the problem is reduced to predicting the access pattern of the algorithm in
question. Dijkstra’s algorithm, for instance, has spacial locality when iterating the neighbor list
of a vertex. It has temporal locality as well, when it places neighboring vertices into the active
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set and later removes them again. However, in the worst case nearly all vertices are in the active
set, caching all of them is potentially infeasible in large graphs.

In the infinitely large design space of caching, there is a lower and an upper bound. The lower
bound is to cache nothing, which means to either rely on fast enough access to storage or to
cache in a lower or higher layer. The upper bound is to greedily cache as much as fits into local
memory — let this be maximal caching. On the one hand, the lower bound does not absorb
any accesses. On the other hand, the upper bound may occupy memory better utilized in the
application or a different part of the system. A way to reduce the latter problem is to bound the
cache’s size to a given amount of memory. This poses the question of how to define the amount
of memory given to the cache. While a definite answer to that question is elusive, just above
the extreme lower bound is an interesting answer calling for closer consideration: the cache is
bounded to a size just large enough to do pre-fetching, write-back, and immediate temporal
caching (i.e. when the cached values are used several times in rapid succession) — let this be
minimal caching.

Accepting that there are a wide variety of cache types with very different requirements in their
combinations and applications, combined with our aim of supporting online and offline graph
processing models, we argue that designing for read caching with pre-fetching and write-caching
with write-back is necessary. As finding an optimal cache size for all applications and inputs
is not possible in the general case, we look into the minimal and maximal strategies in our
evaluation (refer to section 7.2). From the results we draw our conclusions.

3.6 Fault Tolerance

Failure of an application built on the Carafe API can only affect the context stored in the vertex
property maps of the affected application. The graph structure remains intact at all times for
other applications, as it is immutable and read-only access is sufficient. When an application
fails during the process of writing within the property map, two cases must be differentiated due
to the caching design of Carafe: (a) If the application is using write caching and no write-back
is ongoing at the time of failure, the data in cache is lost and the remotely stored data remains
consistent. (b) Otherwise, if a write-back is ongoing or the application is not using write caching,
thus remote data is being modified, the state of the data under access will be inconsistent due
to the zero-copy, in-place modification nature of Carafe, and RStore beneath it. This scenario
of inconsistent state can be avoided by enabling the optional copy-on-write mode provided by
RStore, which modifies data in a new location and transparently updates the logical address
when and if the write completes successfully. In case of failure, the original data is left intact.

Beyond data consistency, Carafe does not offer support in failure recovery as the primary goal
is to provide a graph data abstraction. Applications must include their own, context-dependent
means of recovering from a failure.

21





4 Carafe Implementation

Carafe is implemented as a library in ∼ 2500 lines1 of templated C++ code. A description of
the implementation follows.

4.1 Graph Storage Format

The Graph A graph is stored remotely in RStore in a serialized form, is persistent, globally
visible and accessible. A CarafeGraph object stores contextual information about the graph and
metadata necessary to bootstrap the graph when loaded. Metadata includes the graph’s name in
string format, a serial number specifying the type of the embedded property map, and the RStore
addresses and sizes of the vertex block array and adjacency list block array. The CarafeGraph

object is stored in an RStore namespace named graph namespace. The RStore address of the
CarafeGraph object together with the namespace is the only knowledge necessary to load the
graph.

Vertices are stored as SerializedVertex objects in one block array in the vertex namespace,
with their vertex ID being the position index. Each SerializedVertex stores its own ID for
back-referencing, its own vertex name for reverse translating ID to name, the offset and size of
its adjacency list, and its embedded property map. The vertex ID and vertex name are 64-bit,
unsigned integers instead of a more space-efficient 32-bit format to support graphs with more
than 4.3 billion (≈ 232 − 1) vertices. The property map is a static type passed to the vertex as
a template parameter and is required to be in a serialized form of the application’s choice.

Edges are stored as the vertex IDs of their destinations in an adjacency list per vertex in the
outedge namespace. All adjacency lists in the graph are stored concatenated to each other in
one block array, i.e. the block array is logically seen as one array of 64-bit, unsigned integers.

Serialization Serialized data is required to be plain old data (POD)2, as defined by the C++11
standard[13], have no local pointers, and little-endian byte order. If the data is a struct or class,
it must be packed to avoid compiler- and operating system-specific padding[14, p.198ff]. The
aim of these measures is to ensure compiler and language interoperability with minimal run-time
performance overhead.

Block Array The block array data structure contains blocks of fixed size. The size is set to
a multiple of the RStore chunk size and blocks are aligned to RStore chunks. Each block is
given a block ID, which is calculated by integer-dividing the vertex ID by the block size —
the vertex IDs are required to be contiguous and zero-based. For each block an raddress

object is stored in a metadata array at the position of its block ID. When the block is mapped,
the block ID is calculated from the given vertex ID. The vertex’s offset within the block is
obtained by calculating the modulo of vertex ID and block size. Lastly, the raddress is looked
up and mapped. The other operations are performed analogously, although while blocks are
always mapped as a whole, reads and writes are by unit of the type stored in the block array
(e.g. uint64 t). Storing raddresses by block instead of by unit stored within the block saves

1As counted by CLOC v.1.53 (http://cloc.sourceforge.net)
2In essence, POD must be a scalar type or a collection thereof, which excludes reference types and language

features such as virtual functions and virtual base classes.
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memory used for metadata. Newer versions of RStore support sub-raddress mapping, which
would make using a single raddress per block array possible.

Block Caching Blocks are cached for (a) mapping, (b) reading, and (c) writing. If a block is
frequently accessed, map caching keeps it in memory, unmodified from the last access, as opposed
to unmapping and then remapping it in RStore. Although RStore does resource caching, which
includes memory chunks, it takes time to locate the cached resource and set up metadata.

Closely related to map caching is read caching, as read caching implies map caching. When
any location within a block is read, the whole block is read from its remote location — this is
pre-fetching. Subsequent accesses within the same block are read from cache.

Write caching is similar; writes to a block are not written back until the block is unmapped.
This has a catch: an RStore map does not automatically perform a read. Thus a mapped, unread
block holds undefined data. If only a part of the block is accessed and then the whole block is
written back, valid data in the remote block location will be overwritten by the undefined data
in the local block. Therefore, the system reads the block following a map before allowing any
write operations.

Hypothetically, the system could remember which segments within a block were written to —
are dirty — and only write back the dirty segments on unmapping the block. In practice, this
is infeasible as the amount of metadata needed for remembering dirty segments easily exceeds
the size of the block; imagine an a-b-a-b scenario in which an integer in every vertex within a
range is modified, while the remainder of the vertex is unchanged; the beginning and end of
every individual, dirty integer would have to be remembered.

In case a write access must immediately be written back to remote storage, the system’s API
offers a method to force an arbitrarily-sized write of byte-granularity through the write cache.

The force-write’s counterpart is a force-read, which reads an arbitrary, mapped segment from
remote storage, ignoring the read cache. Of all these caches, only map caching is compulsory.
Read caching is enabled by default as data is expected to be mostly static and only read by the
mutator. Write caching is disabled by default as it causes conflicts in case of multiple mutators
modifying the same block in disjunct segments.

Block Eviction Cached blocks are evicted as per the clock algorithm[15]: blocks are stored in
a circular list of slots. The references of each block are counted in a reference counter r. And
each block is given multiple chances before being evicted; the chances remaining are counted in
a chance counter c. A pointer, called the clock hand, points to one of the cache’s slots.

When map() is called on a block not currently in cache, the slot pointed to by the the clock
hand is examined. If the reference counter r 6= 0, the clock hand is moved forward by one slot
and the next slot is examined. If the block is not currently referenced (r = 0), but still has at
least one remaining chance (c > 0), then c is decremented by 1 before the clock hand is moved
forward. Else, the block in the slot pointed to by the clock hand is chosen for eviction.

Once a victim is found, the new block is installed in the chosen slot. The reference counter is
set to 1 and the chance counter is set to a constant k; in our implementation, k = 1.

If map() is called on a currently not referenced block already in cache, its chance counter is
restored to k. In case all cached blocks are referenced and none is evictable, the system throws
an exception and escapes.

The clock algorithm is an approximation to a least recently used (LRU) eviction policy, as
LRU is notoriously difficult to implement efficiently. The rotating pointer resembles the hand
of a clock, hence the algorithm’s name.
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4.2 Graph Access

With a CarafeGraph object in hand, the vertices of a serialized graph in RStore are accessed
by random or sequential means:

Random Vertex Access The VertexHandle effectively implements a “Bridge” pattern[16,
p. 151ff] to provide a clean, abstracted API to the underlying SerializedVertex. When the
VertexHandle is passed to CarafeGraph with a vertex ID, the vertex ID is placed into the
VertexHandle and a local pointer to the containing block array is set.

When map() is called on the handle, it forwards the call to the block array with the vertex ID
as argument. The block array calculates the block ID and offset of the vertex, maps the vertex’s
block if it is not in cache, increments its reference counter, and returns a local pointer to the
block and the offset. The offset is given in units of SerializedVertex.

On a read() call, it is passed through to the block array with the vertex ID and block
pointer. The vertex ID is again used to calculate the block ID. The cache is queried if the block
has already been read. If so, the call returns immediately, if not the block array is instructed to
read the block before returning. write() is analog to read(), the only difference being that a
cached write marks the block as dirty.

unmap() drops down to the block array with the vertex ID, finds the block, and decrements
the reference counter. When the reference counter reaches zero, the block remains mapped and
in the cache, but is evictable. Finally, the block pointer and offset variables are invalidated.

Sequential Vertex Iteration When a HandleIterator is obtained from the CarafeGraph, it
is constructed with a ManagedVertexHandle and a BlockIterator. The BlockIterator is
constructed with a pointer to the vertex block array, a vertex ID, and the size of the range to
be iterated as parameters. In the case of vertices, the vertex ID is equivalent to the position
within the array.

On being dereferenced, the iterator dereferences the BlockIterator, which checks if it already
has a pointer to the current vertex’s containing block. If yes, it returns a reference to the current
vertex’s SerializedVertex. Otherwise, it first maps and reads the block. The read uses the
range’s size to intelligently determine if the whole block is within the range or not; if not, only
the block segment which is within the range is read (although if read caching is enabled, the
whole block is read anyway). The range is read with one read() call, which takes the vertex
ID, block pointer, and the size of the range. The HandleIterator passes the reference to the
ManagedVertexHandle and returns a reference to the latter.

On being incremented, the iterator hands the call down to the BlockIterator. This one
increments the block offset and checks if the offset is valid. If it is, it then increments the vertex
ID and returns. If not, it writes the block, analogously to the read described above including
the size optimization, and unmaps the block. Constant iterators, which are read-only, omit the
write and only unmap. Only then does it increment the vertex ID and return. The write-back
and unmap of the last block in the range happens when the iterator is destructed.

Iterator comparisons on the HandleIterator are passed down to the BlockIterator, and
are implemented as a comparison on the current vertex IDs of the current and other iterator.

The ManagedVertexHandle is equivalent to the random-access VertexHandle, but does not
include the map(), unmap(), read(), and write() functions.

Sequential Adjacency List Iteration Like with sequential vertex iteration, the adjacency list
of outedges are iterated with a BlockIterator, which is however not wrapped.

The iterator is obtained from the vertex handle, which can be either a VertexHandle or a
ManagedVertexHandle. On construction, a pointer to the adjacency list block array, the start
index, and adjacency list’s size are passed as parameters.
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When dereferenced, the iterator returns a vertex ID reference. The remaining operations are
as explained in sequential vertex iteration.

4.3 Importing a Graph

Edge List Format The most common format graphs are distributed in is an edge list; each
edge is represented by the two vertices at either end, with vertices encoded as ASCII numbers
separated by whitespace. Edges are assumed to be directed.

Efficiently importing this edge list format into Carafe is challenging; edges can be listed in
any order, the number of vertices and edges in the graph is initially unknown, as is the number
of adjacencies per vertex. Thus memory for the graph cannot be pre-allocated immediately, nor
can adjacency list positions be calculated within the adjacency list block array. Also, reading in
an edge is effectively a random access within the graph, although in some files edges are sorted
by the edge’s head endpoint in ascending order (all outedges of a vertex are grouped), which
makes the access sequential.

The importer must therefore make two passes; the first pass calculates the graph’s in-memory
size and component placements, the second pass imports the data into Carafe. In the first pass,
a hash map mapping vertex names to vertex ID and out degree is populated, and the number
of vertices and edges is counted. Vertex IDs are generated here, where vertices are ID-ed in the
order they are encountered (i.e. the i’th vertex gets ID i), regardless if they are the head or
tail endpoint of an edge. In the second pass, space in RStore is reserved and allocated. Then
the graph is iterated sequentially with a HandleIterator, and the vertices are populated from
the hash map. Finally, the file is read again to populate the edges. Here, the head endpoint
must be mapped and read to find the current end position in the adjacency list of the vertex
and to increment the list’s size. The vertex is kept mapped until a different head endpoint is
encountered. During both passes, the file is read sequentially with no random accesses.

The import process can be sped up considerably by enabling read and write caching — the
HandleIterator writes back vertices block-wise either way, but the write back of edges is faster
due to less re-maps of vertices and block-wise adjacency list reads and writes.

Fast Format Despite the performance enhancements for the edge list file format described
above, there is much potential for improving the import time due to the number of remote
operations on RStore. We reason that a graph will be imported into Carafe multiple times,
with a conversion from edge list format to a custom format taking place only once. Therefore
Carafe has a custom file format, dubbed “fast format”, with the aim of achieving optimal import
performance.

A fast format file contains an array of 64-bit, unsigned integers in little-endian byte order.
The graph is stored in an adjacency list data structure as follows:

Metadata At position zero is the format version number, at positions one and two are the
number of vertices and edges, respectively.

Vertices From position + metadata are the vertices, in order of ascending IDs. Each vertex
stores its name, outdegree, and indegree in the stated order.

Edges From position + vertices are the edges, grouped by vertex with the groups ordered
equally to the vertices. The start offset for each adjacency list is the cumulative sum of
the adjacency lists’ sizes (= outdegrees) before it.

The converter goes through the same steps as the edge list importer, but stores the graph to an
mmap()’ed output file in fast format.

The importer is more simple. It first mmap()’s the file. Then it reads the metadata and
reserves and allocates the graph in RStore. Following that, it populates the vertices with a
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HandleIterator. Finally, it populates the raw adjacency list block array with a BlockIterator.
Read and write caching have no effect on this importer, as the iterator operates block-wise even
without them.

The performance of the fast format importer is much better than that of the edge list importer.
Refer to section 7.3 for an evaluation of measurement results.
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5.1 Design Goals

C-Pregel is conceived as a high-performance implementation of a Pregel-alike API1 built on our
Carafe graph processing framework. It is a showcase for the generality of Carafe’s interface,
demonstrating how a high-level, distributed graph processing framework is constructed with the
primitive graph operations exposed by Carafe.

The Pregel model is an embarrassingly parallel graph processing model (see section 2.6.1).
This provides frameworks implementing the model the potential for large-scale distribution of
computations. The first challenge in this comes from attaining high throughput to dynamically
fetch graph components from remote memory when they are not held in local memory (e.g.
due to the graph’s size), and exchanging messages between cluster nodes before synchronizing
the superstep transition. In large graphs there is enough parallel slack to hide latency while
processing vertices, if the pipeline delivering unprocessed vertices remains fed. Attaining high
throughput is thus key to high performance.

The second challenge originates from the distributed setting of C-Pregel. Minimizing the
runtime applies not to a single node locally, but globally to the whole cluster; nodes must work
together by distributing the workload evenly across the cluster. With a load-balancing solution
we must ensure that individual hardware components, such as CPU cores, network links, or
DRAM, do not become a performance and capacity bottleneck for the entire system.

Our design goals for C-Pregel are:

Semantic Pregel Compatibility The framework should offer all necessary functionality to run
applications assuming the Pregel model. Applications written against other frameworks
should semantically be portable to C-Pregel.

High Throughput The data and control path separation and zero-copy design of Carafe should
be extended to C-Pregel. The system should achieve high vertex and message throughput
by leveraging these properties into a distributed processing environment. It should score
optimal performance in the Carafe setting of high-performance network hardware and
multi-machine, multi-core, rack-scale cluster landscape.

Zero Graph Partitioning Instead of relying on an NP-hard graph partitioning problem to achieve
good performance in selected graphs and algorithms, the system should focus on achiev-
ing excellent performance in all, especially also in difficult, scenarios. By not attempting
to minimize intra-cluster communications via graph partitioning, balancing of the cluster
nodes with polynomial-time workload partitioning attains C-Pregel’s full attention.

The scope of our design is limited to the core Pregel graph processing model; supplementary
features such as message combiners and global aggregate functions are not supported. Further-
more, C-Pregel is limited by the feature set of Carafe; in particular, structural graph mutations
are not possible. Due to the design constraints inherited from RStore’s resource pre-allocation
and our zero-copy design goal, arbitrary message destinations are not possible; a vertex can send
messages only to its neighbors, as defined by the graph’s structure.

1Google’s Pregel API is not public; the API in the paper is merely an abstraction.
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5.2 Abstraction and API

On a high level, the C-Pregel closely resembles that of Google’s Pregel implementation. There
are, however, a number of differentiating factors which must be accounted for.

As in Pregel, the Vertex class is the API’s core component, and is subclassed by the applica-
tion. Vertex is a template class and does not specify a compute() method; the application must
provide it itself. The application must pass the concrete vertex type it defines as a template
parameter to the system, which instantiates the concrete vertex type at a time of its choosing.
No guarantees are given concerning the maintenance of state of any application-defined fields of
Vertex. This template-based design is a matter of preference; any effects on performance when
compared to a dynamic-dispatch-based design are a secondary consideration.

Different from Pregel is the vertex initialization. In Pregel, the system sends an initial activa-
tion message to each vertex. In Carafe, the system calls an initialize() method to initialize
the vertex property map. In the same fashion as with compute(), initialize() must be de-
fined by the concrete vertex type. initialize() is guaranteed to be called exactly once on
every vertex in the graph. While the Pregel approach is more elegant from a system design
perspective, it forces compute() to handle the first superstep as a special case. In this sense,
our approach is more practically oriented.

5.3 Distributed Architecture

C-Pregel is a distributed framework. As such, its nodes must coordinate their initialization,
workload distribution, supersteps, and other information among another. There are two funda-
mental design choices for accomplishing this; let these be designs (1) and (2).

(1) is a master–worker design. A unique master has a global view of the system and handles
all coordination within it. Multiple workers are conducted exclusively by the master and never
communicate directly with another.

(2) is a fully distributed design. All nodes are equally responsible for coordination within the
system. They must be mutually consent for global action, such as beginning a new superstep.

Although the master in design (1) constitutes an inherent single point of failure, whether design
(2) possesses more efficient failure recovery is debatable. From a design perspective, design (1)
is more simple than design (2). Simplicity in design clearly outweighs alleged robustness in
failure recovery. Furthermore, in the scope of our work, the scale of the cluster leads us to
assume a low probability of failure. In our decision to favor simplicity we are supported by
other systems[17, 10] and recent research in consensus protocols[18].

5.4 Processing Vertices

Given a master–worker architecture, the steps for processing vertices are as follows:

1. Register the workers with the master and distribute work to them in the form of vertices.
Synchronize all workers.

2. Initialize all vertices by calling the application-provided initialize() method on each
vertex. Activate all vertices.

3. Fetch the incoming messages for the current superstep. Activate all inactive message
destinations.

4. Call the application-provided compute() on each active vertex.

5. Post the outgoing messages of the current superstep.
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6. Synchronize all workers. If there are any active vertices or outgoing messages, transition
to the next superstep by repeating from step 3.

The steps of special interest are the registration and synchronization of workers, the work distri-
bution, and the message fetch and post. Registration and synchronization are explained in the
next section. Work distribution is explained in section 5.6. The workings of message passing is
detailed in section 5.7.

5.5 Superstep Synchronization

Figure 5.1: State Machine of a Worker for Superstep Synchronization;
The clear state transition from running depends on the worker having active ver-
tices or sent messages (clear1), or neither (clear2).

For the system to implement the Pregel model correctly, workers must be synchronized before
the first superstep and after every superstep thereafter. To this purpose, the master and workers
implement a state machine. For the state machine to be correct, a set of rules must be obeyed.
Firstly, the workers are in exactly one state at any time. They transition atomically from one
state to another only when the master issues a directive. Directives are issued atomically and
only one directive can be outstanding at any one time; all workers must have transitioned to the
new state before the next directive can be issued. Lastly, a directive issued must be legal for
the current state; a directive is legal if it defines a transition from the current state to another
state.

In the state machine, the master ensures that both the directive and the workers’ state are
clear on initialization. Only then may the workers be started; they immediately set their
state to waiting. In state waiting the master communicates the graph’s location, partitions
and distributes the workload, initializes a messaging framework, and directs initialize. The
workers now load the graph, read their workload partition, hook into the messaging framework,
and transition to state ready. This state signals that they are ready to start a superstep.

The master directs go to start the first superstep. On starting a superstep, the workers
immediately transition to state running. Once all workers are running, the master sets the
directive to clear. This intermediate state ensures that the workers do not mistakenly read the
same go directive twice. When the workers have completed their work for the current superstep,
each worker receives the clear directive and then transitions to one of two states: (a) done if
it has active vertices or outgoing messages in its workload partition, (b) halted if all vertices in
its workload partition are inactive and it has no outgoing messages. If all workers are in state
halted, the master directs terminate. Else, the master starts the next superstep by directing
go once again.
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5.6 Workload Partitioning

The goal of the workload partitioning is to use all resources available to the system such that
application runtime is reduced to a minimum. We differentiate workload partitioning from the
NP-hard graph partitioning problem by its goals. Like graph partitioning, the goal of workload
partitioning is to balance the workload across all partitions such that utilization of available
system resources is maximized. Unlike graph partitioning, workload partitioning does not aim
to minimize inter-partition communication.

To bound implementation complexity, we introduce an additional design constraint: workload
can only be distributed once during startup of the system. Effectively, this is a static scheduling
problem for which we have developed several candidate solutions:

By Vertices Distribution The most trivial method of distributing the workload is by splitting
it into equally sized partitions by vertices. If all n partitions have the same size and there
remain some number m < n vertices left over, these m vertices are distributed among m
partitions.

By Edge Distribution Somewhat similar to by vertex distribution, by edge distribution at-
tempts to split the workload evenly into partitions by the number of edges. However,
as the Pregel model is vertex-oriented, edges belonging to the same vertex must be as-
signed to the same partition; in other words, the distribution is by vertex, but vertices are
weighted by the number of their edges. The weighting can be either by outedges or by
inedges.

The algorithm is simple and greedy: Find the ideal partition size Sideal by dividing the
number of edges by the number of partitions. Iterate through the graph’s vertices and sum
the number of edges encountered. When the sum exceeds Sideal, reset the sum, group the
vertices encountered since the previous sum reset to a partition, and continue iterating.

By Component Weight Distribution The edge distribution algorithm can be taken one step
further. Instead of only counting edges, the weight factor is made explicit and the two
types of graph components are considered: vertices and edges. Each of these is assigned a
given weight. Then the weights are applied to the algorithm above.

Both the vertex and edge distributions are quickly skewed by imbalances in the graph. Let there
be a graph in which few vertices have many edges and many vertices have few edges, and the
graph is stored with vertices sorted by their adjacency list size in ascending order. Then the
first partition in by vertex distribution will have only few edges, and the last partition will have
many edges. Given an algorithm that iterates the adjacency list of every vertex, the runtime of
the last partition will be significantly longer than that of the first partition. Thus the workload
is imbalanced. The imbalance is inverted if the workload is distributed by edges.

The skew is avoided by the by component weight distribution. Both vertices and edges are
considered. Their weights represent the cost of the system to process them. For vertices, the cost
factors in the computational resources used to fetch the vertex, evaluate if it is active, execute
the compute() method, et cetera. For edges, it is the resources used to inspect the edge during
an adjacency list iteration, post and fetch a message traversing the edge, process the message,
and so forth. Consequently, the vertex and edge weights can be adjusted to set these costs in
proportion to one another.

We evaluate the different workload partitioning methods described above in section 7.2, and
conclude which is the best choice for highly-skewed, power-law graphs.

32



5.7 Message Passing

5.7 Message Passing

Message passing between vertices is the central component of the Pregel model. It is the reason
why supersteps must be synchronized. Most importantly, message passing is the bottleneck of
the model. If the graph can not be partitioned such that the number of edges spanning partitions
is small, the network traffic compulsorily increases. This stands in stark contrast to network
traffic caused by cache misses on the graph structure and associated contextual data, which in
the Pregel model can be reduced or eliminated by increasing the cache size. Thus for the system
to perform well, it is crucial to have a high-performance message passing subsystem.

To support arbitrary algorithms in the Pregel model, the message passing system is required
to (a) have the ability to deliver messages individually, and (b) be delivered in the superstep
imminently succeeding the one they are sent in. The first requirement is not necessary for all
algorithms, but any relaxations are case optimizations; the system must still support the base
case. Given these requirements, our stated goal is to support the base case efficiently. There are
a number of different design considerations taken into account.

Design 1 Messages can be passed along edges in the direction of the edge, i.e. a messages
traverses an edge. Given that a message must be buffered between being sent and being received,
message passing is closely related to the storage of edge property maps. Therefore in a design
(1), message passing could re-use the fundamental graph data structures introduced in section
2.4; after all, they are looking up an edge to store a message, and later compute() iterates a
vertex’s inedges to fetch them.

In the current line of thought, there is one important, implicit assumption: every edge is
traversed by a message in every superstep. This assumption does not hold, as not all algorithms
perform all-to-all messaging in every superstep (although there are some which do, for instance
PageRank in section 2.5.2). The implication is that iterating all inedges to check whether or not
the edge holds a message in the current superstep is inefficient.

Design 2 A second, more efficient design (2) extends the message passing model to the workers.
Let messages between vertices be known as v − messages, and messages between workers as
n −messages. When the vertex u on the worker A sends a v-message to the vertex v on the
worker B, the v-message is encapsulated in a n-message from A to B. To reduce the number of
n-messages between A and B, multiple v-messages are bundled into one n-message. On receiving
a n-message, worker B unbundles the v-message by copying it to a buffer containing messages for
vertex v. Thus all messages for v can be placed contiguously into the buffer. When compute()

iterates the buffer, only v-messages that are present and valid are read; there are no empty slots
in between valid v-messages as in design (1).

Unfortunately, there is a data copy in this design, requiring an additional memory and con-
tradicting the stated zero-copy design goal. Also, if implemented as a producer-consumer queue
in RStore or with RDMA directly, there must be a read-write barrier between the producer
and the consumer. The producer must wait if its production rate is faster than the consumer’s
consumption rate, and vice versa. The issue becomes especially pronounced when the queue size
q � |Ep|.

Alternatively, the iteration searches all n-messages for v-messages belonging to the current
vertex. The copy and additional memory are avoided at the expense of O(|Vp| · |Ep|) time
complexity, with Vp and Ep being the vertex and edge sets of worker B’s workload partition.

Design 3 A third design (3) bundles all v-messages going from vertices on worker A to vertices
on worker B into one single n-message, called a message container. The v-messages within
a container are then grouped by destination vertex, such that all v-messages within the same
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Figure 5.2: Shared Mailbox Model in C-Pregel: Let superstep k be odd; then worker 0 (1) reads
incoming messages from even areas; (2) computes the partition’s vertices; (3) writes
outgoing messages to odd areas; (4) synchronizes between supersteps; (5) proceeds
to the even superstep k + 1.

container belonging to a vertex v are contiguous. In addition, the groups are sorted such that
they are in the same order as the vertices compute() is called on.

The first vertex to be processed, u1, sequentially iterates its v-messages in each container
on worker B. u1 leaves the iterators for each container at the first position after its groups of
messages. The next vertex u2 then re-uses those same iterators to sequentially iterate its groups
of messages, and so forth.

The analysis for design (3) is more involved than for the first two. The grouping and sorting
can be summarized to one sorting operation per container, where v-messages are sorted by
destination vertex ID. Sorting messages can be done in-situ (i.e. requiring no additional memory
allocations), in

O(|Ec1 | log(|Ec1 |) + |Ec2 | log(|Ec2 |) + . . .+ |Ecn | log(|Ecn |))

time, with Eci being the set of edges (= messages) in container i, Ep the set of edges in the
worker’s workload partition, and

n⋃
1

Eci ≡ Ep

assuming an O(n log(n)) sorting algorithm. The total time to iterate the messages is in O(|Ep|).
Regrettably, sorting messages precludes a zero-copy implementation.

We argue that design (3) is a good trade-off between memory usage and time complexity, al-
though it is one of the more difficult designs to implement.

Shared Mailbox Model Having settled on design (3) for delivering messages between workers,
there remain some details to be worked out concerning how message delivery is organized system-
wide.

An edge between the vertices u and v can span any possible pair of workers, because it is not
defined where u and v are located. Thus all combinations must be supported by the system.
Assuming there are N workers, this implies that there must be N2 message containers between
them. If the containers are organized as a square matrix, both the ith row and the ith column
are associated with the ith worker. Each row and each column constitutes a mailbox. From the
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perspective of a worker, its row is its outbox and its column is its inbox. Thus worker i delivering
a message to worker j places the message into container (i, j).

However, this causes a read-write conflict. While worker j is reading from its inbox in su-
perstep k, worker i is writing to its outbox messages for superstep k + 1. These messages sent
in superstep k must be received precisely in superstep k + 1. The solution is to subdivide each
container into an even area and an odd area. In an even superstep, workers write to outboxes
in the even area and read from inboxes in the odd area. In an odd superstep the roles are
reversed, eliminating the read-write conflict. The synchronization avoidance comes at the ex-
pense of space. Each container’s size is determined by the number of edges between the workers’
partitions. As each container is subdivided, the space requirement is effectively doubled.

We refer to this global organization of message delivery as the shared mailbox model and
display a diagrammatic overview in figure 5.2.

5.8 Fault Tolerance

Pregel defines a checkpoint-based recover model. A checkpoint interval is given as a number
of supersteps. A checkpoint always takes place at the end of a superstep. When a checkpoint
is reached, all workers save their state to persistent storage. State includes at least the vertex
and edge property maps, and messages received for the next superstep. On failure, the state is
recovered from the last checkpoint and the master repartitions and redistributes the workload
among the still functioning workers. Execution restarts from there.

The checkpoint interval size is a balance between checkpoint cost and recovery cost. As
checkpointing is expensive, Pregel proceeds to defining a confined recovery strategy in which in
addition to the checkpoints, sent messages are saved for every superstep. The history of failed
partitions can then be calculated from the last checkpoint with the history of the remaining
partitions.

In C-Pregel, all workers hold their state in Carafe and RStore. Further, at the end of every
superstep the state in Carafe and RStore is consistent. Finally, thanks to the shared mailbox
model, the inbox of every partition remains unmodified until after the next superstep has started.

It follows that the inbox of a partition for the current superstep can be recovered from RStore
at any point in time. At the expense of applying the even-odd area rotation to the remaining
state as well, the current superstep is always recoverable by re-assigning and re-executing the
failed partitions.
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C-Pregel is divided into multiple submodules. The master and worker represent the logical
components of the system and are both compiled to executable files. They communicate and
synchronize via the metadata manager module. The latter describes the states and directives
of the synchronization state machine in addition to performing the actual communication. The
execution of the state machine is in the domain of the master and worker, however. Message
passing is delegated to a module called the message manager.

Taken together, the implementation is in ∼ 2200 lines1 of templated C++ code.

6.1 Master Life Cycle

The master is the first component to start. On boot it is passed as argument the number of
workers in the system. It loads the graph and initializes the metadata manager, which returns
an RStore address. This RStore address is the master address. With it and the master’s RStore
namespace, the master can be found by the workers. The master then waits for the workers
to boot and be in waiting state. It then partitions the graph with the specified partitioning
function. The partitions are passed to the workers, and to the initializing message manager. The
the workers are also passed the graph’s and message manager’s locations in RStore. Once that
is done, the workers are directed to initialize. When all workers are ready, the superstep
loop is started with the first go directive. This continues in a loop as long as workers come
back with done after completing a superstep. Once all workers are halted, the master directs
terminate and shuts down.

6.2 Worker Life Cycle

The worker takes the master address and namespace as arguments. With these arguments it ini-
tializes the metadata manager on boot and signals waiting state. When it receives initialize,
the worker loads the graph and initializes the message manager. From the message manager
it gets a reference to the inbox. An instance of the concrete vertex class is instantiated —
the concrete vertex type is passed to the worker as template parameter at compile time. The
concrete vertex is passed references to the graph and the partition’s outbox. For each vertex in
its partition, the worker calls initialize() on the concrete vertex. At last, the worker sets the
current superstep to zero and signals ready. On receiving go, the worker enters the superstep
loop and signals running.

Inside the loop, the worker instructs the message manager to fetch messages, and gets an
inbox iterator from the inbox. Then the worker begins to sequentially iterate the vertices in its
partition using a ManagedVertexHandle.

For each vertex, the following happens. The inbox iterator is notified that it is to start a new
vertex, so that the iterator can end with the last message in the inbox for the current vertex. A
reference to the vertex handle is passed to the concrete vertex object. If the current vertex is
active or has new messages waiting, compute() is called on the concrete vertex. The method is
passed the inbox iterator as argument. When the method returns, two flags in concrete vertex
are checked to determine whether the vertex deactivated itself and whether it sent any messages.
Then the loop is advanced to the next vertex.

1As counted by CLOC v.1.53 (http://cloc.sourceforge.net)
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After all vertices are processed, the worker either signals done or halted, depending on
whether or not there are still active vertices in its partition and messages were sent. It then
waits on the master’s directive. If it is terminate, the worker shuts down. Otherwise, if it is
go, the worker tells the message manager to post the sent messages, increments the superstep,
and advances to the next superstep iteration.

6.3 Message Manager

The message manager is an abstraction for the storage of and access to messages. It is supported
by two internal submodules, the mailbox object and the inbox iterator. The mailbox object is a
“Proxy”[16, p. 207ff] to an underlying, conceptual mailbox consisting of message areas located
in RStore. Depending on whether the mailbox object is being read from or written to, it is
called inbox object or outbox object, respectively. The inbox iterator is a read-only iterator to
access the messages within an inbox object.

Note that within this section, the terms “mailbox”, “inbox”, and “outbox” refer to the design
concepts; the mailbox object is referred to verbatim.

Message Storage The type of the messages is defined as template parameter of the concrete
vertex. When sent, a message is wrapped in an envelope containing the vertex IDs of its
source and destination. The vertex name of its source is in the envelope as well, as no high-
performance way for translating IDs to names is currently implemented. The message is stored
in the designated container area. All areas are allocated by the master on message manager
initialization. Each area is physically a fixed-size array, and stored in its own RStore namespace
to avoid lock contention in RStore on control path operations. Logically, each area is a queue,
to which new messages are appended. The area start and end RStore addresses, capacity, and
namespace are stored as metadata in RStore by the message manager.

Mailbox Fetch and Post When the message manager is initialized on a worker, it reads in the
RStore addresses and namespaces of all the even and odd areas within the even and odd inboxes
and outboxes of the worker.

When the worker requests the inbox to be fetched, the message manager reads the queue
metadata of the areas belonging to the inbox of the current superstep from RStore and delegates
it to an inbox object. The inbox object maps each such area, reads it as a whole, and sorts its
messages as described in the design section. Sorting is implemented using C++ std::sort()

function, which is a combination of the quicksort, heap sort, and insertion sort algorithms. Then
the call returns.

On a post request, the message manager delegates control to the outbox object. The outbox
object writes back each area belonging to the outbox of the current superstep to RStore in one
go and unmaps it. Then the message manager writes back the queue metadata of the same
areas. Finally, the call returns.

Inbox Iteration On creation, the inbox iterator is passed a reference to the worker’s inbox
object. The first message queue in the inbox is set to be the current queue, and the queue
positions of all queues are set to the queue beginnings. When instructed to begin a vertex, the
iterator sets the request vertex’s ID as the current vertex ID.

When dereferenced, the iterator looks up the position of the current message by means of the
current queue and queue position. It returns a reference to the message.

When incremented, the iterator increments the queue position and checks if it is valid. A
queue position is valid if it is not past the queue’s end, the queue is not empty, and the message
at the current queue position is destined for the currently set vertex. If the position is valid,
the method returns immediately. Otherwise, the queue list in the inbox is iterated until either
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a valid queue position is found or the last queue is reached and is found to have no valid queue
position. In both cases, the method returns.

On a comparison, the iterator checks if the current queue position is valid and returns the
appropriate Boolean value.
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In our evaluation of Carafe and C-Pregel, we show that the system scales linearly in the number
of workers and linear-logarithmically with graph size. The system performs within 93% of
peak performance with minimal caching. It is imbalanced with static workload partitioning,
but with better workload models the imbalance is reduced. Finally, we highlight that Carafe’s
performance is comparable to state-of-the-art graph processing systems in similar settings.

The systems we compare against are:

GraphX GraphX[19] builds on top of Spark, a distributed, data-parallel framework which im-
plements a variant of the MapReduce abstraction. Similar to Carafe, GraphX exposes a
set of primitive graph operators, implemented in relational algebra on Spark. On these is
set the Pregel-alike graph processing framework we compare against.

GraphLab PowerGraph GraphLab PowerGraph[20] offers a novel gather, apply, scatter (GAS)
model. Next to being a model in its own right, GAS is general enough to function as a
foundation for other graph processing models, such as the Pregel model. The algorithms
we are interested in are implemented directly on the GAS model, however.

We evaluate and compare Carafe with two popular graph algorithms, Dijkstra’s algorithm and
PageRank. Dijkstra’s algorithm is implemented directly on the Carafe API, while PageRank
uses our C-Pregel framework. The algorithms are chosen as they represent typical, I/O-bound
graph workloads, are simple enough to implement, and are frequently used for comparing graph
processing systems.

The tests are performed on a 12 node, IBM x3650 M4 cluster. Each node has two 2.9 GHz,
8-core Intel Xeon E5-2690 CPUs, 256 GB RAM, and three 10 Gb/s, dual-port Chelsio T420-CR
RNICs for a combined total of 60 Gb/s. The RNICs support iWARP over Ethernet and are
connected with an IBM RackSwitch G8264 switch. With this setup, network latency for an 8
byte RStore read is 9.6µs[3]. The nodes run Debian Linux with a 3.13.11 vanilla kernel.

In the default setting, each cluster node is given one C-Pregel worker for a total of 12 workers;
RStore memory servers run on all nodes. The C-Pregel master shares a node with one of
the workers, while the RStore master resides on a 13th node outside the core cluster. The
setting maximizes bandwidth per worker and minimizes resource contention for measurement
consistency.

Parameter Setting

# Workers 12
Partition by weight
Read caching enabled
Write caching disabled
Cache block size 24 MB
Vertex cache size 500 blocks
Edge cache size 1000 blocks

Table 7.1: Carafe Default Parameter Settings

RStore balances chunks across memory servers in a round-robin fashion and is configured to
use a 2 MB chunk size. If a read or write operation spans multiple chunks, the chunks will
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be spread across multiple RNICs, also in a round-robin fashion. Thus, Carafe’s cache block
size is configured to be a multiple of (#RNICS × chunk size). Unless otherwise stated, read
caching is enabled, write caching is disabled, and the chosen block size is 24 MB. The cache’s
default setting is to hold 500 vertex blocks and 1000 edge blocks for a total of 11.7 and 23.4
GB, respectively. This is enough to hold the complete working set data of the graph datasets in
cache on a C-Pregel worker.

Graph Vertices Edges

LiveJournal 5.4M 79M
Twitter 41M 1.4B
UK 2007/05 106M 3.7B

Table 7.2: Graph Datasets

The graph datasets used in our evaluation are distilled from real-world data. The LiveJournal
graph[21] models friend relationships between users on the LiveJournal1 online social network.
The Twitter graph[22] models follower relationships between users on the Twitter2 online social
messaging service. The UK 2007/05 graph[23] is a representation of links between .uk websites
as of May 2007.

Each experiment is sampled three times. The presented numbers are the means of the three
runs.

7.1 Dijkstra’s Algorithm
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Figure 7.1: Dijkstra’s Algorithm Performance

The evaluation of Dijkstra’s algorithm’s (see section 2.5.1) performance is run on the Live-
Journal graph with read and write caching enabled. Caching both reads and writes is necessary
to reduce round-trips. Due to the large cache size the entire graph fits into memory, thus the
experiment represents best-case performance.

Dijkstra’s algorithm has an access pattern as follows: the algorithm’s active set is stored in a
min-heap data structure in local memory. Each time a vertex is set as current and inspected,

1http://www.livejournal.com
2http://www.twitter.com
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the vertex including its property map is loaded from Carafe. Its adjacency list is scanned
sequentially, and each neighbor vertex is loaded from Carafe to compare its distance. If the
distance is updated, the vertex is stored to Carafe.

As each load and store represents a data path round-trip to the RStore memory server, Dijkstra
is heavily dependent on low latency graph access. The run-time is proportional to the number of
neighbors inspected, which has only a very loose correlation to the destination vertex’s distance.
The correlation is seen clearly in figure 7.1.

Pre-fetching data is possible within an adjacency list, because adjacencies are accessed se-
quentially. But for the vertices referenced in the adjacency list this is difficult, as vertices are
accessed in the order they are listed in the list, effectively random accesses. The same goes for
adjacency lists, which is especially detrimental if the lists are short. The next “current” vertex
may be located in cache if it was accessed recently in the neighbor inspections. Otherwise, it
too is a random access.

Our evaluation of Dijkstra’s algorithm is by no means complete; worst-case performance is left
to be analyzed, as well as caching behavior. Nevertheless, the experiment shows the effectiveness
of the system’s zero-copy API and implementation, with no I/O constraints and a challenging
memory access pattern.

7.2 PageRank

Our implementation of PageRank (see section 2.5.2) is an identical transcription of the im-
plementation described in Pregel[10]. The only deviations are syntactical adjustments to fit
C-Pregel’s API. No form of message combining is used, and all PageRank experiments run 32
full iterations.

To evaluate PageRank, we first give an overview of how our system performs with the three
different graphs, We look at how it scales with the number of workers, and how the cache size
affects performance. Then we inspect how skews in workload partitioning are detrimental and
where time is spent within a worker. Finally, we compare C-Pregel’s performance to that of
other systems.

Performance Overview Figure 7.2a depicts the runtime performance of C-Pregel for the Page-
Rank algorithm with the three real-world graphs given as input. The graphs differ in size, with
the LiveJournal graph being the smallest, followed by the Twitter and UK 2007/05 graphs. This
order of scale is reflected in the comparison, where the runtime is higher for larger graphs. In
all of the graphs, the number of edges dominates the number of vertices by a large margin (refer
to table 7.2).

In our implementation of the PageRank algorithm, vertices send an update of their current
PageRank to all their neighbors in each superstep, i.e. PageRank performs all-to-all messaging.
As C-Pregel does not implement support for message combiners, each such message is passed
individually. For the system, this is the worst-case scenario.

Loading vertices and edges from RStore is efficient, as both are accessed sequentially on each
worker and can be pre-fetched. After all vertices are processed during a superstep, they are
written back to RStore at the latest before the superstep is finished. Like the load, the write-
back is sequential and can be performed block-wise. The void of random accesses makes for
good cache behavior, meaning accesses are inexpensive time-wise.

Scaling Input Size Putting together the three factors that (a) the number of edges is the
dominant in the graphs, (b) there is a message along each edge in every superstep, and (c) loading
and storing is efficient, leads us to the hypothesis that passing messages is the dominant cost for
PageRank. The hypothesis is supported by comparing the number of edges to the algorithm’s
runtime in figure 7.2b. The data points suggest that runtime scales linear-logarithmically with
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Figure 7.2: PageRank Runtimes of Graphs

the number of edges, which would reflect the scaling factor of the message passing subsystem’s
design (see 5.7). However, the data available is insufficient for a thorough analysis of the scaling
complexity; more datasets are necessary.

Scaling Workers Scaling the system’s size is a determining factor of the success of a distributed
system. Figure 7.3 shows the performance of C-Pregel when scaling from 1 to 12 workers in
steps of three when processing the LiveJournal graph. The master runs on a dedicated node
while the worker count is beneath 12. At twelve workers, the master shares a node with one of
the workers. Even while C-Pregel is scaled, the default RStore configuration remains unaltered.

The performance initially starts out with a jump amounting to a 2.3× speedup when going
from 1 to 3 workers. Incrementing the number of workers dampens the speedup to 1.7× for each
further three-worker step.

The initial speedup is, as expected, nearly equal to the increment in resources. The speedup
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Figure 7.3: Scaling Workers on LiveJournal

factor slows after reaching 3 workers, but is still linear. An explanation for this is that the
workload partitioning is not perfect; this alone is not satisfactory, however, as our partitioning
comparison below shows. Another contributing factor is that the RStore resources are held
constant. Although the bandwidth given to Carafe increases with the number of workers, the
bandwidth of the memory servers per worker decreases proportionally to the number of workers.
Even so, the total bandwidth of RStore is mostly independent of Carafe’s due to the full-duplex
network wiring — outbound traffic from a Carafe worker is inbound traffic to an RStore memory
server. The direction of traffic is the same across all nodes at a given point in time, as the
C-Pregel workers synchronize supersteps and thus are always in approximately the same work
phase.

We conclude that bandwidth will become a limiting factor if it is not scaled with the number
of workers, although the effect is not yet significant in this experiment.
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Figure 7.4: Graph Cache Performance
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Graph Cache and Pre-Fetching With read caching enabled, part of a worker’s working set
resides in local memory. We evaluate how minimal and maximal caching perform in combination
with the clock eviction strategy (see sections 3.5 and 4.1). To gain insight into why minimal
caching behaves as it does, we add more data points in between the two extremes.

The experiment is run on the Twitter graph dataset with the default settings, save for the
cache size. Vertices and edges have independent caches; we state cache sizes in the number of
blocks as 〈vertex, edge〉 tuples.

For minimal caching these are set to one block each, 〈1, 1〉 — for the Twitter graph the
setting represents 5% of a worker’s working set stored in the cache. For maximal caching the
default sizes of 〈500, 1000〉 blocks are sufficiently large to cache the whole working set on each
worker — maximal caching sets the 100% performance baseline. The remaining sample sizes are
deduced from the in-RStore, serialized size of the graph. The Twitter graph fits into 〈93, 467〉
blocks; if these are distributed evenly among 12 workers, this amounts to 〈7.75, 38.9〉 blocks.

From these numbers the other two sample sizes are deduced: |working set|
2 and |working set| − 1

amount to 〈4, 20〉 and 〈6, 37〉 blocks, or 50% and 95% of the working set, respectively. Though
the intermediate size settings are not precise because the graph’s skewed edge distribution and
C-Pregel’s by weight work distribution do not partition the graph perfectly, the experiment’s
conclusion remains unaffected.

The results of the experiment are depicted in figure 7.4. All three settings, minimal caching,
〈4, 20〉, and 〈6, 37〉 achieve 93% of maximal caching’s performance. Although surprising at first,
it is easily explained. Access to the graph and property maps is sequential, meaning blocks are
pre-fetched. Each block in the working set is loaded once per superstep. In the case of maximal
caching, the cache is warmed up in the first superstep, and then the blocks remain available
locally. In all other cases, the clock algorithm’s LRU eviction degenerates to a first-in, first-out
pattern; all blocks must be loaded in every superstep. While the purpose of caching is shattered,
pre-fetching amortizes the latency cost of fetching blocks over many graph components. Fast
remote graph access reduces the performance penalty for loading blocks on each superstep when
processing vertices in PageRank.

If we attribute the difference between minimal and maximal caching to computing vertices (see
the worker time profile paragraph below), we calculate a slowdown of 1.27×. We believe this to
be a reasonable price for dynamically loading graph data. Cache sizes in-between minimal and
maximal caching have no advantage over minimal caching with an LRU-like eviction strategy.

Distribution Minimum (s) Maximum (s)

by vertices 4.8 76.7
by outedges 19.7 25.2
by weight 20.6 22.8

Table 7.3: Workload Partitioning Imbalance

Workload Partitioning The target of workload partitioning is that all workers are assigned an
equal share of the total workload. In a static scheme, the work is distributed at the beginning
of the experiment and henceforth remains unchanged. The difference in the busy time of the
least- and most-loaded workers is a measure to determine how well the system is balanced.

Table 7.3 lists the slowest and fastest workers for PageRank on the LiveJournal graph. The
rows show the experiment’s runtime with each workload partitioning strategy from section 5.6.

Partitioning by vertices is the most simple approach, but the LiveJournal graph’s skew in
edge distribution results in sub-optimal workload partitioning. When partitioned by outedges,
the cost of loading edge blocks and message passing are more equally shared by workers, and
the system has somewhat better performance. But the cost of processing vertices is unbalanced.
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7.2 PageRank

Merging the two strategies by assigning both vertices and edges a weight of 1 to reflect the costs
associated with them yields the desired result of an approximately balanced system.
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Figure 7.5: Worker Time Profile

Worker Time Profile Breaking down the work time of a worker into the major components
shows where time is spent and further optimizations should be concentrated on. Work time
is the time effectively spent computing and excludes the time to initialize and synchronize the
system. The operations which constitute the main time components are normalized and shown
in proportion to the total work time in figure 7.5. The three main work phases — fetching
messages, computing vertices, and posting messages — account for almost the complete work
time when taken together. Initialization of vertices, setting up and incrementing the vertex and
message iterators, and other small operations are at or below the measurement resolution, thus
are not included in the figure. The “compute vertex” operation, next to measuring the time to
call compute() on vertices, encompasses the time to load and store vertex and edge blocks, and
to append messages to the send queue; with maximal caching, loading blocks is a one-time cost
in the first superstep, but the write-back occurs during each superstep.

The experiment is run on all three graphs with the default settings. In addition to averaging
over three runs, the results are also averaged over all 12 workers.

The largest time segment is spent on fetching messages. Posting messages is the smallest
contributor, and stands in stark contrast to fetching messages; fetching messages takes between
65% – 80% of the total time. The difference between the two operations is logically small —
read() is substituted for write() — but for one detail: in our implementation fetch sorts
messages within the message areas (see section 6.3). Sorting messages accounts for over 90% of
the fetch time. Computing vertices with maximal caching is the second-largest time segment,
at 17% - 29% of the work time.

As such, the current design has efficient sending and receive iterations at the expense of
sorting messages. Although it appears that the time spent to sort messages could be used more
effectively elsewhere, the system’s goal is to reduce the cost of message passing as much as
possible. Being the largest expense in the system, more work is necessary to implement sorting
more efficiently and to evaluate other message passing designs.

Comparing Systems The comparison places GraphLab and GraphX into the described 12-
machine, single core setting of Carafe. The systems all run native implementations of PageRank.
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In the case of GraphLab and GraphX the demonstration implementations from their respective
code bases are used. As opposed to C-Pregel’s implementation, both of these combine messages.
The input dataset is the LiveJournal graph.

Our system shows a 2.64× speedup compared to GraphLab PowerGraph 2.2, and a 4.27×
speedup compared to GraphX. Given that the other systems show little network activity after
the initialization, we deduce that partitioning and combining messages are effective in reducing
inter-worker communication. Also, it shows that they, too, perform maximal caching of the
graph. Further, the performance numbers roughly correspond to those presented by the authors
of GraphX[24] after adjusting for differences in the hardware setup. However, as of this writing,
we did not profile the other graph processing frameworks and therefore do not have deep insight
into where they spend time.

7.3 Import Format Comparison

In section 4.3 we argue that importing a graph from disk is done often enough to justify con-
verting graphs into a format suitable for fast importing. We then go on to describe an on-disk
fast-format and claim that it is more efficiently imported than a raw edge list. The claim is
quantified here.

In the experiment the LiveJournal graph is first converted to fast-format using the described
conversion tool. Then both fast-format and the edge list are imported into Carafe. Carafe is
backed by the default 12-node RStore cluster setup. To ensure that the converter and importers
are not bottlenecked by the disk, all input and output datasets are read from and written to
Linux’s in-memory tmpfs.

As shown in figure 7.7, converting and then importing Carafe’s fast-format takes a similar
amount of time as importing an edge list. But once the graph is in fast-format, the conversion
cost falls away, leaving only the import time. Importing from fast-format takes just 1.68 seconds,
a speedup of 37×. As a bonus, the fast-format’s binary adjacency list is a factor 1.76× more
compact than the ASCII edge list, 0.62 GB versus 1.1 GB.

The reason for the similar performance of conversion and importing of an edge list lies with
the underlying application logic — it is virtually the same in both programs. The large speedup
when importing from fast-format is due to its optimal structure. The information necessary to
allocate RStore resources is pre-calculated and located at the file’s beginning. Reading in the
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graph is then entirely sequential both in memory and on disk, needs only one pass and minimal
processing.

When taken together, there is only disk space to be lost to additionally store the graph in
fast-format, but much time to be saved.
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8 Related Work

This chapter focuses on related work in distributed graph processing. We first present an
overview of existing systems and then concentrate on external memory based systems.

Beginnings Initially, there were single-threaded, non-distributed graph processing systems such
as the Boost Graph Library (BGL)[25], which provide a useful, graph-oriented abstraction for
implementing graph algorithms. BGL comes bundled with a sizeable collection of graph algo-
rithms ready for use. As graph data set sizes grew and multi-core machines became available, a
distributed computation model became necessary.

Parallel BGL[26] partially retains the graph-oriented model in a distributed environment.
Vertices are distributed to owning nodes, each responsible for its partition during computation.
At the partition’s edge, “ghost vertices” act as place-holders and caches for adjacent vertices.
To take advantage of multiple cores, several of BGL’s algorithms are parallelized.

The model’s scalability is limited in many senses. Most importantly, edge cuts and hence
ghost vertices bring network latency and bandwidth constraints, and the model has no notion
of fault tolerance.

Carafe borrows the idea of placing the graph into a shared, globally accessible adjacency
list data structure. Similarly to BGL’s vertex and edge descriptors, Carafe’s vertex handles
and iterators abstract the underlying storage structure. But unlike BGL, Carafe does not
impose ownership of vertices or otherwise pre-partitions the graph; it is up to the application to
control which parts of the graph are mapped. Applications are empowered to fine-grained data
operations and to decide if and how graph data is cached. Failures of operations are tolerated
by Carafe and the application defines the frequency of write-backs to remote storage.

The Standard Systems Malewicz et. al.[10] argue that the Parallel BGL model does not offer
fault tolerance and other features necessary to scale the system. Further, they reason that the
MapReduce[27] and SQL models are ill-suited for iterative, stateful graph processing. They
propose Pregel, which we describe in detail in section 2.6.1. The model massively parallelizes
computation by taking a vertex-oriented view, and reduces the impact of edge-cuts by combining
messages. Superstep synchronization and explicit message passing provide opportunity for fault
tolerance.

Low et. al.[11] take an alternative path to vertex-centrality: instead of a synchronous, mes-
sage passing system, Distributed GraphLab implements an asynchronous, shared-memory graph
processing model. A choice of consistency models with different trade-offs ensure readers and
writers do not conflict. The asynchronous model hides latency induced by storing large graphs in
external or remote memory, and, in certain settings, has faster convergence in some algorithms
such as PageRank. These benefits come at the expense of a non-deterministic execution model
and usability.

The graph structure in Pregel and GraphLab is mostly static. They are unable to string
together computations, are limited to a single data set, and employ NP-hard, edge-cut graph
partitioning. Combining messages is only possible when there exists an associative and commu-
tative operand to combine them. Nevertheless, they form the current de facto standard in the
realm of distributed graph processing systems.

Carafe offers a higher-level, graph-oriented view which is reducible to a vertex-oriented view,
as demonstrated with C-Pregel. Defining distributed computation and message passing mod-
els is left to the application, Carafe focuses on the graph storage abstraction. The current
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implementation also features a static graph structure, but Carafe applications can access an ar-
bitrary number of distinct graph data sets simultaneously and compose multiple computations
in sequence.

C-Pregel inherits Pregel’s properties, with the differences described in section 5.1. But as
opposed to Pregel and GraphLab, C-Pregel does not rely solely on minimizing network traffic for
input scalability. Passing individual messages circumvents the associativity and commutativity
requirements of message combiners and is feasible also for large graphs. Fault tolerance is
inexpensive and has fine resolution. It is to a large degree an integral part of the system, and
only a single superstep of a single partition must be recomputed in case of node failure.

Recent Research To avoid the high communication costs associated with edge splits, Gonzalez
et. al.[20] exploit the skewed vertex degree distribution of the graph structure to partition by
edges. High-degree vertices are split over multiple partitions and the state of these is synchro-
nized. Their PowerGraph framework is a follow-up on GraphLab which introduces a model
with gather, apply, and scatter (GAS) phases. The execution engine decides the order in which
the phases are run, resulting in either synchronous or asynchronous execution. With these two
modes of operation, the Pregel and GraphLab models are shown to be subsets of GAS.

Data-parallel systems have become more universal since the original work on Pregel, and have
acquired support for iterative, data-dependent algorithms[28, 29, 30, 31, 32]. With these new
armaments comes the power to build efficient graph processing systems on their abstractions.
In particular, GraphX[19, 33, 34, 24] by Crankshaw et. al. is a graph processing system based
on Spark[31], which casts a set of graph operators to relational algebra. These graph operators
are then assembled to higher-level graph abstractions, e.g. the Pregel model. While GraphX’s
approach has shown competitive performance, its value lies in its novel interpretation of graph
processing. Data-parallel operations can be applied to a graph-oriented view, the graph structure
being completely mutable. The data-parallel and graph-parallel models are well-integrated, and
computations in both models are efficiently pipeline-able. It also does away with limitations
to single data sets; GraphX can dynamically combine and split graphs and map data from a
database to a graph.

The authors of these frameworks have found a more effective heuristic to partition graphs,
and adapted their computational models to fit. They borrow message combining from Pregel
and apply it in new ways, for instance PowerGraph’s delta-caching, or generalize to a functional
approach in GraphX’s reduction operators.

Like GraphX, Carafe views the graph as structured data and provides primitive operators to
mutate the data. Its more specialized, light-weight nature allows for the introduction of a new
concept to graph processing: data and control path separation. Fast access to a remotely stored
graph challenges data-locality considerations and changes design considerations. It remains to
be seen how this impacts computational flexibility and how modern graph processing models
such as GAS benefit from it.

Shao et. al.[35] argue that there is so much diversity in graph structures and algorithms that there
exist no generally optimal storage scheme and computation model. To adapt to the diversity,
their Trinity system offers a domain-specific language (Trinity Specification Language) to model
data and inter-node communication. The TSL automatically generates object-oriented APIs
for the data and communication models. Data is physically stored in a distributed, in-memory
key-value store. Thus, the graph structure is completely mutable. With their system, they
implement the Pregel model.

In spirit, Trinity and Carafe are alike. Trinity and Carafe both separate storage from algo-
rithm, both have distributed, in-memory storage, and both implement Pregel as proof-of-concept
of their abstraction. However, we disagree with the vision that a framework must support every
possible instantiation of a graph data structure to cope with diversity in graphs and algorithms.
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We argue that a handful of well-chosen data structures is sufficient for the vast majority of com-
binations. With specialization comes potential for optimization. As an example: where Trinity
attempts to provide fast graph access with zero-copy serialization, Carafe goes one step further.
The local and remote storage structures are identical; the locally mapped parts are merely a
window of the whole structure. Combined with explicit data and control path separation, the
synchronization of local and remote data is zero-copy end to end.
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The design and implementation efforts have borne fruit, yet there is more work ahead until
Carafe is a fully-fledged graph processing system.

9.1 External Vertex and Edge Property Maps

In section 3.4, we discuss the advantages and disadvantages of external vertex property
maps. In most non-research systems, practical issues often outweigh performance considera-
tions. The time to import a graph repeatedly may well be more than the time gained from higher
performance due to locality; indeed we have argued similarly regarding the fast file format. Then
again, there may be cases when the external property map design offers higher performance than
its internal counterpart, for instance if properties are accessed only infrequently.

Thus far, Carafe does not support edge property maps. While they can be simulated with
vertex property maps, native support is more space efficient when property maps have fixed
size. The arguments for internal versus external property maps are equivalent to their vertex
pendants. Since edge properties are often defined in lieu with the graph structure as opposed
to being initialized to a constant or structure-related value, the importers must be modified
accordingly.

For both vertex and edge property maps, byte-wise granular read and write should be
supported. Although their usefulness is greatly diminished when read or write caching is enabled,
in some situations they are essential. For example, imagine two workers concurrently accessing
disjunct properties within the same property map. If the whole map is read and written back by
both workers, depending on the serialized order of operations, one worker will overwrite changes
made by the other worker. The workers can avoid overwriting changes by mutating their fields
with finer granularity.

9.2 Dynamic Scheduling

Dynamic scheduling of the workload in C-Pregel is challenging in a system with resource pre-
allocation at its core. As we have shown, a well-tuned static scheduler can achieve good per-
formance. But static scheduling only goes so far. It requires hand-tuning of parameters to the
algorithm and computational environment for optimal performance. Diversity in these factors
makes finding optimal, static parameters for all settings impossible. To make matters even
worse, stragglers during processing of large graphs can prolong the runtime significantly while
wasting resources. There are three approaches to explore which do not compromise the current
system’s design.

Neighbor Shifting Firstly, given the contiguous vertex and adjacency list arrays, it is desirable
to keep the workload partitions contiguous as well, both to avoid unnecessary complexity and to
optimize block caching. Secondly, the matrix of message areas is inflexible; arbitrary workload
re-allocations would require re-allocation of the affected areas to move memory capacity from
one RStore namespace to the other.

The first point is solved if vertices are rebalanced only between neighboring workers, where
workers are neighbors if the conjunction of their partitions has contiguous vertex IDs. Thus,
one worker shifts part of its workload to its neighbor.
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The second point can be fixed by unifying the areas into a single namespace and allocating
them contiguously. Space in the message slots could then be shifted from one message area to
another by logical reallocation. As the donor area would shrink while the recipient area would
grow, the areas in-between would need to be shifted and their messages moved (i.e. copied). The
RStore addresses for the message areas would be reset to the new addresses and sizes on each
worker.

This whole process requires the complete system to be at a stand-still (stop-the-world). An
opportune moment for rebalancing is in-between supersteps.

Intra-Worker Work Stealing Within a worker, threads share the graph’s block cache and have
fast access to the in-memory state of other threads. Work stealing[36] then functions as follows.
Each thread stores the vertex IDs of its unprocessed workload in a queue. A thread works
through its own queue by popping work units off the front of the queue. Now, if a thread’s
queue is empty, meaning it has run out of work, it attempts to pop work units off the back of
another queue and pushes them onto its own queue; the victim queue is selected uniformly at
random. The concurrent queue access implies that the push, pop-front, and pop-back operations
on a queue must be thread-safe.

The remaining issue to resolve is the inbox iterator. If access to messages is not sequential,
the benefits of the design are lost. However, if work is stolen in contiguous chunks, the victim’s
inbox iterator’s end could be adjusted, and the thief would create a new inbox iterator for his
loot.

The drawback to this design is that vast parts of the message passing subsystem must be made
thread-safe. Next to complexity, this adds time to acquire locks or perform atomic operations
even when there is no contention.

Micro-Partitions If there are N workers in the system, the graph is divided into N partitions.
Currently, each worker is assigned exactly one partition. Dividing the graph into smaller micro-
partitions, each worker initially receives more than one partition. Micro-partitions can then be
re-assigned to balance the workers’ workloads.

Micro-partitioning is the most simple of the presented methods to implement. The drawback
is that large partitions only allow coarse-grained balancing, while very small partitions increase
the overhead of managing them and reduce the performance benefits of sequential access.

These methods can all be combined and matched to play their strengths and overcome their indi-
vidual weaknesses. For instance, micro-partitions could coarsely balance work between workers,
and within each worker work stealing would finely distribute the workload among the threads.
The combination would overcome the limitations of static scheduling, making Carafe a more
practically usable system.

9.3 Multi-Threading

Modern symmetric multi-processing (SMP) machines have many cores and large amounts of
main memory. They have a layered cache hierarchy and non-uniform memory access (NUMA).
To use them to their full capacity, a distributed system such as C-Pregel has two possibilities:
processes and threads.

Multiple, single-threaded processes, as in the current design, can run on the same machine to
maximize resource utilization. They are oblivious of their close locality and communicate via
the network.

In contrast, a single, multi-threaded process is aware of its threads’ close locality. In the
Pregel model there is no immediate benefit in sharing the graph cache, because the workloads
of the individual threads are disjoint. However, instead of exchanging messages over RStore,
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passing a pointer to a message area is sufficient as the threads share the same address space.
This saves bandwidth and is orders of magnitude faster. A second potential benefit from the
shared address space comes in the form of workload partitioning (see section 9.2 above).

Design Draft The master and worker need alteration to accommodate threads. The worker
delegates its work loop to the threads. Each thread receives its own mailboxes, which in an initial
implementation remain mostly unmodified from their current design. The worker’s block cache
must be made thread-safe for concurrent accesses in the case of block sharing. The worker’s
main thread is promoted to locally managing an extended state machine. Lastly, the core state
machine between the master and worker remains unchanged, but is extended such that the
worker checks the state of all workers before signaling the master and propagates directives to
its threads. All the while, the correctness requirements of the state machine must be kept intact.

Workload Partitioning On startup, each worker informs the master about its number of threads
so that the master has a global view of resources. The master can then split the graph into as
many partitions as there are threads and distribute the workload directly to each thread. With
a global picture and fine-grained control of resources, the master balances workload not only in
homogeneous, but also in inhomogeneous clusters.
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10 Conclusion

In this work we have demonstrated that graph storage and computation are effectively and
efficiently separable in a distributed setting. Carafe illustrates how to design and implement a
distributed, in-memory graph storage abstraction layer as a foundation for high-performance,
distributed graph processing systems. Our framework uses RStore as basis, a general-purpose
data store that leverages RDMA to deliver high-bandwidth, low-latency access to data stored
in remote DRAM. By treating all graph data as remote but readily accessible, our system
implementation demonstrates how to translate high performance at the network layer into high
performance at the graph application layer. Carafe’s capabilities are shown by way of C-Pregel,
a Pregel-alike, distributed graph processing system, and an implementation of Dijkstra’s single
source shortest path algorithm.

Together, Carafe and C-Pregel are competitive in performance with state-of-the-art systems
in calculating PageRank. The system scales linearly to linear-logarithmically with input size,
and linearly with network and CPU resources. With Carafe we quantify the performance impact
of dynamically loading graph data from remote storage in comparison to exclusively relying on
caches, and conclude that, in our setting, dynamic loading is feasible for large graphs. Like-
wise, C-Pregel opens the doorway to graph computations where optimization based on graph
partitioning and mathematical properties is difficult.
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