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Zusammenfassung

In den letzten Jahren hat die Forschungsgemeinschaft erhebliche Anstrengungen
unternommen, um die Abfrageverarbeitungsleistung von GPUs zu untersuchen.
Das Übertragen von Daten in den GPU-Hauptspeicher erzeugt jedoch immer noch
einen Übertragungsengpass, der die Fähigkeit von GPUs zur Big-Data-Verarbeitung
einschränkt. Dieser Datenübertragungsengpass verhindert eine hohe Leistung bei
der Abfrageausführung. Die Platzierung von Operatoren erhöht möglicherweise
die Leistung, da das Filtern von Daten auf der CPU das Datenübertragungsvol-
umen reduziert. In dieser Arbeit schlagen wir einen heterogenen Ansatz vor, bei
dem wir datenintensiven Operatoren die Ausführung auf der CPU zuweisen, um
den Engpass bei der Datenübertragung zu reduzieren. Da die Rechenleistung der
GPU ideal für rechenintensive Betreiber ist, konzentriert sich unser Ansatz darauf,
nur eine gefilterte Teilmenge der Daten im GPU-Speicher zu übertragen. Um dies
zu erreichen, nutzen wir die hohe Bandbreite und die Cache-Kohärenz, die schnelle
Verbindungen bieten, in diesem Fall NVLink 2.0, und ziehen verschiedene Übertra-
gungsmethoden für unseren heterogenen Ansatz in Betracht.

Durch die Auswertung der Abfrageausführungszeit demonstrieren wir, dass un-
sere heterogenen Ansätze tatsächlich einen Leistungsabfall im Vergleich zur opti-
mierten CPU- und GPU-Baseline zeigen. Wir liefern eine mögliche Erklärung für
dieses Verhalten und schlagen nächste Schritte vor, um diese unerwarteten Ergeb-
nisse weiter zu analysieren. Andererseits bestätigen wir, dass schnelle Verbindun-
gen eine wichtige Rolle bei der Verbesserung der Abfrageausführungszeit spielen,
da wir eine zweifache Beschleunigung auf NVLink 2.0 gegenüber PCI-e 3.0 zeigen.
Schließlich bewerten wir die Auswirkung der Selektivität auf die Abfrageleistung
und zeigen, dass dateneigenschaften die Gesamtleistung beeinflussen.
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Abstract

In the last few years we have seen a significant effort by the research community
to explore the query processing power of GPUs. However, transferring data to the
GPU main memory still creates a transfer bottleneck which confines the ability of
GPUs on big data processing. This data transfer bottleneck prevents high perfor-
mance on query execution. Operator placement potentially increases performance,
because filtering data on the CPU reduces the data transfer volume. In this thesis
we propose a heterogeneous approach where we assign data-intensive operators
to execute on CPU in order to reduce the data transfer bottleneck. Given that
GPU’s processing power is ideal for compute-intense operators, our approach fo-
cuses on transferring only a filtered subset of the data in the GPU memory. In
order to achieve this we utilize the high bandwidth and the cache-coherence that
fast interconnects offer, in this case NVLink 2.0 and we consider different transfer
methods for our heterogeneous approach.

By evaluating the query execution time, we demonstrate that our heterogeneous
approaches show’s in fact a drop down in performance compared to the optimized
CPU and GPU only baseline. We provide a possible explanation for this behaviour
and propose next steps to furthermore analyze these unexpected results. On the
other hand, we validate that fast interconnects play an important role on improv-
ing the query execution time as we show a 2x speedup on NVLink 2.0 over PCI-e
3.0. Finally, we evaluate the effect of selectivity in query performance and we
showcase that data characteristics affect the overall performance.
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1 Introduction

In the information era in which we are living, large amounts of data are gener-
ated daily. To keep pace with the exponential data growth requires processing
power to grow exponentially as well, in response to this need for continuous per-
formance improvement, the microprocessor industry has increased the number of
CPU cores. However due to power constraints processors are becoming increas-
ingly specialized[53].

Recently, we have seen the adoption of graphics processing units (GPUs) to
process data, because GPUs have higher memory bandwidth and more compute
throughput than CPUs. These key features makes them well-suited to improve
the execution time of query processing systems [17, 33].

1.1 Motivation

In principle, data-parallel co-processing algorithms that use both CPUs and GPUs
are able to speed up queries. However, data-parallel co-processing is ineffective if
the algorithms experience transfer bottleneck [29, 61]. This problem especially
limits the performance of data-intensive GPU operators that use full table scans
on large data sets [47]. In contrast, CPUs have a direct connection to main mem-
ory. Therefore, data-intensive operators achieve a higher throughput on the CPU
than on the GPU. Although, deciding which operators to place on the CPU and
the GPU is a well-known challenge known as the operator placement problem.

Computing data on the CPU can be faster than on the GPU. However, with
the appearance of new faster interconnects such as NVLink 2.0, Infinity Fabric
those scalability issues are now solved. The high bandwidth and the low latency
that these fast interconnects offer solve the transfer bottleneck and can speed up
processing large data stored in main memory. Fast interconnects replace the PCI-
e interconnect that is employed in database systems to connect the GPU with
the CPU and main memory. Compared to PCI-e, fast interconnects provide high
bandwidth and cache-coherent transfers. Fast interconnect technologies currently
include NVLink 2.0, Infinity Fabric and CXL.
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1.2 Research Challenge

GPUs perform well for compute-intensive operators such as joins, grouped aggre-
gations and sorting [42, 27, 33]. However, GPUs have a limited memory capacity
which prevents them from storing large data sets. Database systems overcome
this problem by transferring data to GPU on demand. As these transfers are con-
strained by the interconnect bandwidth from the GPU to main memory, GPUs
face a data transfer bottleneck. Due to the data transfer bottleneck, database
systems cannot fully utilize all available hardware.

1.3 Novelty

Recently, the research community has explored the GPU processing of relational
operators [56, 42, 38, ?, 31]. However, these mostly do not consider the query
execution over heterogeneous processors.

The aim of this thesis is to investigate heterogeneous co-processing and devise
a novel approach to construct an operator pipeline. This approach will make use
of a fast interconnect, to employ a CPU and a GPU in a heterogeneous manner
and exploit the combined processing power of both processors. As the GPU is
bandwidth-bound, we instead propose to use a task-parallel approach that aims to
reduce the data transfer volume. We place data-intensive operators on the CPU,
and compute-intensive operators on the GPU. In addition, we explore connecting
the operators into a pipeline across a fast interconnect. This operator placement
decision making potentially increases performance, since we filter and project data
on the CPU hence reducing the data transfer volume for the GPU.

1.4 Anticipated Impact

The goal of this Master’s thesis will be to explore and comprehend the new oppor-
tunity of efficient task parallelism that fast interconnects offer. By taking advan-
tage of multiple, heterogeneous processors, we aim to reduce the query execution
time.
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1.5 Outline

The remainder of this thesis is structured as follows. Chapter 2 gives an overview
of the background concepts and technologies. Chapter 3 discusses the research
problem of this thesis along with the goal. In chapter 4 we describe our hetero-
geneous solution and the plan of implementation. In chapter 5 we describe our
experiments and we analyze the results. Chapter 6 describes the related work.
Finally, chapter 7 concludes the thesis and identifies issues that are worth further
research.
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2 Scientific Background

In this chapter we clarify the differences of CPU and GPU, we overview CUDA,
the programming language of NVidia. We describe the interconnects and different
transfer methods that concern us. We give an overview of technologies and con-
cepts important for the grasping of the paper such as hash join, no partition join
and data characteristics. We additionally, discuss GPU databases and material-
ization strategies.

2.1 Hardware

In this section, we first present the differences between the CPU and the GPU.
We then present the important architectural details of GPU’s and their current
bottlenecks, that this paper is based on. We introduce NVLink 2.0, the new fast
interconnect by NVidia, and compare it to the commonly used PCI-e 3.0. Finally
we give an overview of CUDA, the programming language of NVidia.

2.1.1 CPU vs GPU

CPUs and GPUs have a lot of attributes in common, but they are built for differ-
ent reasons. Graphics processing units (GPUs) are focused on parallel computing
whereas, Central Processing Unit’s (CPU) focus is on task parallelism and serial
processing.

Architectural wise, the CPUs are built with a few cores and caches that can
execute 4 or 8 threads simultaneously. In contrast GPUs have hundreds of cores
and manage thousands of threads efficiently [14, 19].

GPUs have been developed to accelerate 3D rendering tasks and matrix multi-
plication. Gradually the GPUs became more programmable, which led to taking
advantage of their computing power. In 2007 NVidia released, a programming
language called CUDA[49], an extension of the C which uses the NVCC compiler,
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an assembly language upon the NVidia’s hardware and PTX the intermediate rep-
resentation of compiler. Cuda is based on the SIMT concept in which a single
kernel function runs multiple times at the same time (SIMT - single intruction,
multiple thread).

Typically a GPU contains multiple processors combined called streaming multi-
processors (SM). A GPU contains numerous SMs that are executing independently.
All of the SMs have access to the global memory of the GPU with maximum bidi-
rectional bandwidth of 160 GB/s, on a NVidia Volta GPU [23, 37, 24]. Also, the
multi-processors have a high-speed L1 and L2 cache which they do share across
the SM and have low access latency. Each SM contains its own threads, called
thread group or warp, and can have access to the registers and global memory. The
hardware itself is responsible for managing and executing these warps.

Figure 1: GPU Architecture

2.1.2 CUDA

Nvidia has developed an application software that handles and scales up to a high
degree of parallelism. Thus Nvidia introduced the CUDA [22] parallel program-
ming model which is similar with the C (programming language). With this API,
programmers are implementing two types of code, the host or CPU code that han-
dles the non-parallelizable parts executed in the CPU and the kernel code which

5



is executed on the GPU.

The host is responsible for allocating the GPU memory needed for the data and
to manage data transfers between the main memory and the device memory over
the interconnect. The commands to allocate the GPU memory and to copy the
data from the CPU and GPU respectively, could happen over CUDA systems calls,
cudaMalloc() and cudaMemcpy(). After the data transfer is complete, the kernel
performs the computational task/function on the GPU. A typical function call on
a CUDA command can be the following :

functionName<<<threadBlock,␣numberOfThreadsInBlocks>>>(parameters)

In CUDA, we launch a kernel with a grid of thread blocks, so in the first argu-
ment we configure the number of blocks in the grid, and in the second we configure
the number of threads per block.

Figure 2: Comparison of sequential and concurrent Cuda Streams. Green back-
ground color means data transfer time and blue background color indi-
cates kernel execution time

Finally, after the data computation is completed, the host is responsible to
copy the results back to the main memory by using again the cudaMemcpy func-
tion and releasing the allocated device memory through cudaFree(), similar to the
free() function in C.

Even though the modern interconnects can transfer several GB/s, the data trans-
fers through cudaMemcpy have to be completed before the kernel can start the
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execution of the function. To overcome this issue and to limit the interconnect
latency, CUDA introduced cudaMemcpyAsync(), which allows the overlap of data
transfers and execution, i.e. kernel A is copying data meanwhile kernel B computes
(see Figure. 5). These concurrent operations are scheduled through Cuda streams.
A stream is a collection of commands that are executed in sequential order. To
guarantee that all commands are called with the right order and that are also
completed successfully, we use cudaStreamSynchronize() which takes as parameter
the specified stream. On devices that do not support concurrent data transfer and
kernel execution, the memory copy from host to device must be completed before
next step initiates.

2.1.3 Interconnects

Peripheral Component Interconnect Express (PCI-e) 3.0 [5] is the PCI-e
technology vastly used in the state of the art systems where it connects the CPU
memory with the GPU over a link for data transfers. PCI-e is based on a point to
point topology that connects every device with a separate link to the root complex.
PCI-e devices communicate via a connection called interconnect or a link. The bus
links support full duplex communication between any endpoint without the loss of
speed. The communication is both the encapsulation of data and status messages
in packets and the decapsulation process accordingly. Each link can contain from
1 to 16 lanes. Each lane is a pair of two data transfer lines, one for transmitting
and one for receiving. GPUs can combine up to 16 lanes thus resulting in 16 GB/s
in total.

There are two types of memory transfers that PCI-e supports. The pageable
copy, where it transfers data directly from any location in pageable memory and
the so called zero-copy. The latter one is a direct memory access function that
allows GPU to directly utilize the page-locked memory of the CPU, resulting in
GPU taking full control of the transfers. Even though there is an improvement
with the bidirectional transfers and the overlaps, still the data have to pass over
the interconnect, so again the PCI-e bandwidth is the bottleneck.

AMD Infinity Fabric [6] is an interconnect that AMD proposed in 2017. Even
though it’s not publicly available, they offer cache coherence and the bandwidth
of Infinity Fabric is heavily correlated with the bus speed of the DDR memory.

CXL [18, 20] is the new interconnect from Intel which is not available yet but
it is confirmed that it uses the PCI-e 5.0 physical layer which has bandwidth of
32 GB/s per lane and it gives the possibility to implement their own transaction
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protocols.

NVLink 2.0 [7, 24, 23] is a new GPU interconnect that Nvidia introduced which
offers up to 25Gbit/s data transfer per sub-link per direction. One link consists
of two sub-links for both directions. Each V100 GPU supports up to six links. So
NVLink allows them to communicate at around 300 GB/s, an unidirectional speed
5 times faster than PCI-e.

NVLink 2.0 can as well use page-locked memory transfer and zero-copy, similarly
to PCI-e 3.0 but it also gives direct access to pageable CPU memory. NVLink 2.0
also introduced a new attribute which allows cache coherence between the CPU
and GPU. Cache coherence guarantees that any change in the data are visible by
any processor or thread. Thus, CPU has the capability to operate in the GPU
cache and vice versa, GPU can access the CPU cache.

2.1.4 Transfer Bottleneck

Over the years, we have seen an increase of GPU’s resources and new capabilities
however the bandwidth issue via the interconnects still is an issue. Considering
that the limited GPU memory (32GB) allows only a small chunk of large data-sets
to be able to be stored and processed, it leave us with the unavoidable choice to
have to stream the data via the interconnect from the CPU to the GPU. More-
over, PCI-e limited memory bandwidth creates a congestion, it confines the data
transfers and introduces a workload overhead.

To avoid this issue there are two alternatives, either increasing the interconnect
bandwidth, a prospect that NVLink 2.0 could come to hand, or having a better
communication plan between CPU and GPU to avoid the overhead and to lower
the execution time.

2.2 GPU databases

In this section we introduce the different operators used commonly for query pro-
cessing and the limitations of GPU databases. Additionally, we will define data
characteristics that have an important role in query planning and optimization.
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2.2.1 GPU databases

GPU databases use GPU’s to perform database operations. The ability of GPU
to perform parallel computation on big volumes of data can lead to extraordinary
increase of the performance. Even though data processing on GPU sounds promis-
ing there are still some drawbacks. First and foremost, the transfer bottleneck we
explained above and second, query processing, query planning and the optimiza-
tions. Aspects that are mostly explored on CPU.

Bress et. al [13] showcase that the GPU’s are better on join operations than
selections and projections due to the unoptimized data transfers. Furthermore
they do conclude that database management and operations have to happen on
the GPU memory, should use column store and only use one operator at a time.
With this mind, it is vital to consider the different query plans and to decide in
a heterogeneous manner the ideal resource (CPU-only, GPU-only or CPU-GPU
cooperation) used for the query execution.

2.2.2 Hash Join - No Partition Hash Join

Hash join [50, 44, 10] consists of two stages: build and probe as shown in Figure
3. In the build stage, the smaller data input are sequentially read and a hash table
with all the tuples is created, meanwhile, the probe phase scans the other input
data and probes the hash table to find matches. The complexity of the hash join
algorithm is O( R + S ) since we read both inputs once.

No-Partitioning Hash Join. The characteristic that makes this specific hash
join useful for our use case is the fact that there is no partition phase, only build
and probe [11]. This hardware oblivious hash join is similar to the canonical hash
join but in a parallel version. Whereas in the build phase the input data (R) are
chunked to smaller versions and are stored in a hash table which are shared among
all the worker threads. The worker threads in the build phase are responsible of
populating the shared hash table while in the probe phase they are responsible to
find matches.

This hash join ensures an evenly distributed work per thread in the hash table
created in the build phase, which hides the skewness of the data and the skew
memory accesses lower the cache misses. The complexity of the no partition hash
join (Figure. 4) algorithm is O( 1/NumberOfCores R + S)
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Figure 3: Hash Join

2.2.3 Column-Stores vs Row-Stores

Column store is a column-wise save mechanism that stores the data in a contiguous
memory positions whereas, Row store saves all the different fields of the data in
a sequential manner (row). Databases using column stores are proven to be ideal
for analytical query processing due to the fact that columns needed for the query
are able to fit into the main memory [3, 2, 59, 60, 36]. Main memory offers low
latency and high bandwidth that leads to high performance for complex queries.

In contrast, row stores are typically used on Online Transaction Processing
considering that the transactions need to access a single record and are faster for
write operations. Traditional relational databases like Mysql, PostgreSQL and Or-
acle use row store, however lately there has been an increase in columnar database
(HBase, MonetDB, MariaDB), since column stores are more prone to optimizations
for queries performance improvement [60, 3].
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Figure 4: No Partition Hash Join

2.2.4 Materialization Strategies

Materialization strategies are techniques introduced in Column-store databases for
gathering all the needed or included columns in a query. Whereas, in a row-store
database there was no need for constructing tuples from the needed columns since
all of them were included. Early materialization is the processing of gathering all
the necessary columns of the query plan as early as possible.

On the other hand, late materialization joins the tuples as late as possible. Late
materialization is suitable for query performance such as compression and iterat-
ing directly in the location of the data [4, 3, 1, 60]. Even though, working with
less tuples at the time is optimal for the CPU efficiency, in some cases it can lead
to the need of accessing multiple times the same column in different stages of the
query. In this situation, the CPU is iterating again the whole data-set which adds
a substantial cost in the performance of the query plan.
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2.3 Data Characteristics

Selectivity is a measure of diversity in correspondence to the values of the given
column in relation to the total number of rows. Low selectivity means fewer rows
to scan and filter which is the best case scenario for a query. Selectivity could af-
fect the query plan decision in cases where the reading of the whole table is better
that random accesses.

Cardinality is the calculation of unique values of the given column. To calculate
the selectivity, cardinality must be calculated beforehand.
selectivity = cardinality/numberofrows ∗ 100%

Data skew refers to the non uniform distribution of a dataset. If the given col-
umn contains some values very often then the data are considered skewed. In case
of high skew in relation to the hash join algorithm, if a big percentage carries the
same value then the worker threads in the probe phase are more likely to match,
in this case the smaller dataset is more likely to fit in the L1 cache that is needed
during the probe phase.
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3 Operator Placement Problem

3.1 Goal - Research Problem

The main goal of this thesis is to efficiently utilize the heterogeneous hardware
systems to reduce the query execution time. The data transfer bottleneck pre-
vents high performance for data-intensive queries for full table scan as shown by
Lutz et. al. [47]. Operator placement potentially increases performance, because
filtering and projecting data on the CPU reduces the data transfer volume. Thus,
instead of transferring all base tables to the GPU, only intermediate results must
be transferred.

However, deciding which operators to place on the CPU and the GPU is a well-
known challenge known as the operator placement problem [31, 41]. The placement
in a heterogeneous system has a highly important role on query performance [40]
and several works have shown the operator’s placement positive results for OLAP
queries [39]. Determining the appropriate plan for the operator placement can be
challenging, many aspects play an important role on the decision-making. The
break point in the query plan determines the size of the intermediate results. The
size is further influenced by the query and data characteristics.
Query characteristics include selectivity, projections, and materialization strat-
egy. In contrast, data characteristics are overall size and data skew. Thus, the
cost of transferring intermediate results limits the optimization space, as many
operator placement plans are not worthwhile.

Additionally, to perform a database operator on a GPU, we have to provide ac-
cess to the input dataset. Most commonly, this is only possible with data transfers
to the GPU, thus it can have a large impact on the execution time of the operator.
Due to the limited size of the GPU memory, the data have to breakdown and
scheduled in order to fit in the GPU memory. These multiple transfers can lead to
even more data traffic and further delay. Whereas, a fast interconnect shifts the
optimization space, because (a) transfers are faster and (b) processors are able to
communicate on a fine granularity due to cache-coherence.

Overall, we aim to exploit the properties of hardware and queries to reduce the
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data transfer volume in an operator pipeline and determine the most suited task
for the appropriate processor.

3.2 Scope of the thesis

To be able to achieve our main goal, we must address the operator placement
problem. We investigate our approaches with NVLink 2.0 and PCI-e 3.0. We
use pinned copy, zero copy and the coherence attribute that NVLink 2.0 offers.
We also consider late materialization for reducing even further the data transfer
volume. To evaluate our algorithms we consider as baselines the single-processor
execution strategies such as CPU-only and GPU-only. In doing so, we restrict our
scope to query execution, and assume that the physical query plan is known.

3.3 Sub-problems

Transfer bottleneck. Given the fact that the GPU has a limited memory ca-
pacity we cannot store the whole dataset in GPU memory. Instead, using a GPU
only execution plan, the database transfers the required data to the GPU. These
transfer times is subject to the interconnect‘s bandwidth, and thus increases the
total query execution time. Our goal is to reduce the transfer time. In general, this
can be accomplished by reducing the transfer volume and increasing the transfer
bandwidth.

Fast interconnects. Fast interconnects provide high throughput for trans-
fers from main memory. However, task parallelism between CPUs and GPUs is a
new aspect that requires further investigation. The interconnect provides cache-
coherence, meaning that it may be possible to stream data between processors via
in-cache buffers. In theory, fine-grained communication could avoid materializing
intermediate results in main memory. Nonetheless, all communication is subject
to interconnect latency as well as the limitations of the cache- coherence protocol.
Thus, our goal is to investigate if a fine-grained task parallelism is efficient.
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4 Cooperative Heterogeneous
Query Execution

In this master’s thesis we implement a prototype that will take advantage of the
relative advantages that CPUs and GPUs offer. Specifically, CPUs are faster than
GPUs at full table scans in main memory [29]. Conversely, GPUs power of pro-
cessing has proven ideal for complex operators such as joins [34, 55, 31, 56, 38, 33],
which offers higher throughput than CPUs. For this reason, we execute selections
that reduce the transfer volume on the CPU, and then offload the joins to the GPU.

In our approach, we use queries based on the Star Schema [51] and the experi-
mental data are generated based on the Star Schema data-set generator [54]. We
will implement two of the most common and essential database operators namely
selection and join. Moreover, we take in consideration for our model the data
characteristics that the Star Schema Benchmark provides. More specifically we
will run our experiments in different data sizes for the same query, examine the
effect of selectivity on our proposed prototype.

Additionally, we introduce fast interconnects to our prototype and make use of
the characteristics that they offer. Such as higher bandwidth, than the commonly
used PCI-e, and the cache coherence attribute [47] which allows direct memory
access between the processors and guarantees that any change in the data is visible
by any processor or thread.

Overall, we propose a task-parallel, heterogeneous execution model that opti-
mizes for fast interconnects. Our solution features two key novelties. First, we
consider fine-grained CPU-GPU communication over a fast interconnect. Second,
we exploit data and query characteristics to reduce the transfer volume. These
two key novelties correspond to two sub-problems. Each sub-problem has to be
resolved for the success of this thesis. First problem is the bandwidth that we use
to move data between operators. To overcome this problem, we need to achieve
high throughput (GB/s), a new possibility that fast interconnects bring to light.
Second problem is the amount of data that the query has, which can lead to high
response time. Thus, the solution at hand is to use the power of CPU for selecting
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the needed data and finally use the power of GPU and the parallelism capabilities
that they offer, to execute the join operation.

To show the efficiency of our overall solution, we will compare our results with a
CPU-only and GPU-only approach, additionally with various communication ap-
proaches and finally take advantage of the no-partition hash join which has proven
ideal for the Star Schema queries [10].

No-Partitioning Hash Join. As a baseline for CPU-only and GPU-only, we
will work with the no-partitioning hash join algorithm, since it can cope with
skewed data [47, 10, 9], and performs well with the Star Schema Queries. The
build and probe phase of the hash join will be performed in the CPU space to
take advantage of the main memory bandwidth and the direct access that CPUs
offer to avoid random access. Overall processors perform better when they process
data from their own memories. With this in mind, we will store the hash table
resulting from the no-partitioning hash join to the GPU memory and exploit the
high sequential bandwidth that fast interconnects offer, such as NVLink 2.0.

CPU - GPU Communication. An important aspect of the hybrid plan is the
establishment of the communication between CPU and GPU for query execution
across the devices. For the communication of the CPU to GPU we will use PCI-e
3.0 and NVLink 2.0 as an interconnect and as a data transfer strategy we will
use the pinned memory, zero copy and cache coherence as explained and used by
Lutz et al. [47]. The one communication approach will be to use cudaMemcpy to
pass on the chunks of data from the pinned buffers of the CPU memory to the
locked buffers of GPU memory and then processing in the GPU space. The other
communication approach will be to use the cache coherence attribute that NVLink
2.0 offers and directly access the chunks of data from the CPU memory with this
pull based transfer method. The reason for comparing these two communication
approaches is to comprehend the drawbacks and benefits of each case and with
that in mind adapt the upcoming scenarios.

Selection Join Query. The queries Q1.1, Q1.2 and Q1.3 that introduced by
the Star Schema, include the operators of selection and join. We are going to
perform the selection/filtering of the fields in the CPU for the reading of the input
data sets from the CPU memory. We save the fields in column oriented buffers
from the start due to the fact that columnar databases improve the performance
for querying data [3, 2, 59]. The hash table calculation will take place in the GPU
as explained above and stored in the GPU memory.
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We implement three different heterogeneous algorithms that use different com-
munication plans.

Heterogeneous Pinned Copy. The first algorithm iterates over the base
data-set, filters the data and stores the intermediate results in a buffer we call
block. This block is of 2MB size. When its full, we transfer it to the GPU memory
for processing the data. This algorithm runs until all the data of the base has
been processed. The advantage of this design is that we utilize both the CPU and
GPU. It’s challenging though, to succeed to utilize them in an overlap manner to
avoid an idle state for both of them.
Heterogeneous Zero Copy. In this approach we use the NVLink 2.0 new

capability which we give direct access to the CPU main memory. We iterate over
the whole data-set and we store the filtered results in a buffer. We try to improve
even further the approach by using the late materialization technique [58] of giving
direct access to the GPU to only the needed columns for the calculation of the
query.
Finally, we implement a Heterogeneous Lazy approach. We iterate over the

whole data-set and store in a buffer the indexes of the needed data. We give access
to the GPU through zero copy to both the index buffer and the original data-set.
The GPU iterates over the index buffer and uses the index to access directly the
needed data for the query processing. For all of our algorithms we try to fine tune
them, with multi-threading them and trying to parallelize them.

Figure 5: Selection join query data flow
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5 Evaluation

5.1 Experimental Setup

In this chapter, we evaluate the performance of our Heterogeneous approach in
comparison with our baselines. To begin with, we define our experimental setup.
Then, we describe our CPU and GPU baselines and the different transfer methods
for our heterogeneous approach. Next, we give an overview of our experiments.
We present the results of our experiments and our observations. Finally, we discuss
the lessons learned.

Workloads. For our experiments we use the Star Schema Benchmark (SSBM)
[51] which is used in different research papers [16, 12, 61]. We implement three
queries that contain one join each and they are using the lineorder, date table. In
our experiments, we run our different heterogeneous approaches and our baselines
in 4 different data sizes. First data-set consists of over 120 million tuples and has
a size of 12GB (scale factor 20). Then we run again the same experiments with a
scale factor of 50, 100 and 200. Which translates to 30, 60 and 120 GB respectively.

Hardware. For our experiments we use two different architectures. The first
architecture is known as IBM AC922 with an NVidia Tesla V100-SXM2 GPU of
16GB memory. It contains 2x Power9 CPUs at 3.3 GHz, each consisting of 16 cores
and in total of 256 GB main memory. The IBM machine has NVLink 2.0 as it’s
interconnect. For our experiments, we run everything on NUMA node 0 that has
128 GB main memory, one CPU and one GPU. The second system has a x86-64
Intel Xeon Gold 6126 at 2.6 GHz, each consisting of 12 cores and 188GB memory.
Each node has an NVidia Tesla V100-PCIE GPU of 16 GB. The Intel machine
has PCI-e 3.0 with 16 lanes. Same as for the IBM system, our experiments run on
NUMA node 0.

Software. The IBM runs on Ubuntu 18.04 meanwhile the Intel runs on 16.04.
As programming languages we use CUDA 11.1 and C++ 9.4.0. To compile the
code we use CMake 3.20.0. We use OpenMP for running our CPU in multiple
threads and we use the Boost library for reading our data-sets.
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Settings. In our approaches we use three different transfer methods, namely
pinned copy, zero copy and coherence. For the IBM system we use the coherence
that NVLink 2.0 offers, instead of zero copy. We read our data from column-
store cached bin files, which we transform from tbl files through the boost library.
As hashing function for our no-partion hash join, we use the perfect hashing. The
reason for doing this is the fact that the date table of SSBM has its unique primary
keys sorted in an ascending manner. The pinned memory approach initially runs
on a 8-thread for loop in CPU and we pin 2MB per thread for transferring on the
GPU. The zero copy and lazy approach both run on a 8-thread for loop in the
CPU. All of our approaches use 1024 thread block size and 160 grid size. Based
on NVidia’s best practices (see [21]) for achieving stable benchmarks, we use the
closest NUMA node. In our case we run all our experiments with the following
command:

numactl --cpunodebind=0 ./benchmark --device=0

Methodology. Wemeasure the query execution time and average all our bench-
marks across 5 iterations. As measuring unit we use milliseconds (ms) and as a
measuring tool we use the C++ chrono library. Our execution times does not
include the time of reading the data-sets and storing in a column-store database
in the main memory. As well as the time needed for creating the hash table and
transferring it to the GPU memory.

Baseline. For our CPU baseline we use perfect hashing and we store the hash
table in main memory. Furthermore, we optimize the iteration of the data-set by
multi-threading the CPU approach (8 threads). The GPU baseline uses perfect
hashing for the no-partition hash join and stores the hash table in GPU memory.
The transfer method for our GPU is zero copy in the Intel machine and coherence
in the GPU machine.

Heterogeneous Approaches. We implement three different heterogeneous
approaches which consist of three different transfer methods. First, for the pinned
memory approach (Het Pinned), we iterate over the data-set and we filter the
data on the CPU. We store the output data from the filter in a pinned buffer we
call block. When this block gets full we transfer it to the GPU memory. Finally
the GPU processes the join operator and stores the output value on a global field.
This iteration continues until all data is processed. The for loop runs on a multi-
threading manner of 8 threads and the block size is set at 2MB, resulting in total
of 16MB.

Next, for the lazy approach (Het Lazy), we start by iterating over the data-
set, filtering the the data on the CPU and storing the index of these filtered data
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in a buffer. In the Intel machine this buffer, as well as the original data-set, is
registered and GPU has access to it in the CPU main memory through zero copy.
In contrast, in the IBM machine we use coherence so the GPU can directly access
the index buffer and the original data-set. We calculate the join operator on GPU
level and we access only the filtered data from the original data-set through the
use of the index buffer.

Finally, the zero copy approach (Het Zero Copy) uses late materialization.
We iterate over the columns in need for our query and collect them in a buffer.
Through NVLink 2.0 and coherence, we give access in the GPU to this buffer for
the calculation of the join operation. In the Intel machine we use zero copy to give
access to the GPU. In all of the above cases, the hash table is in the GPU memory
and the iteration runs with multiple threads (8).

5.2 Design and an Interpretation of the Results

5.2.1 Experimental Design

Experiments. We conduct four experiments. First, we evaluate the performance
impact on execution time of our three different heterogeneous approaches in com-
parison with the CPU-only and GPU-only baselines. We use the biggest data-set
(120GB) and run three queries from SSBM. The baselines as described above is
a CPU-only and a GPU-only approach which are optimized with multi-threading
and use coherence as transfer method based on Lutz et. al.[47], respectively. We
expect that the heterogeneous approach, which uses the coherence from NVLink
2.0, will be the fastest solution across all the different cases. We also, assume that
the lazy approach is faster than eager pinned and that GPU finishes earlier than
pinned and CPU due to the use of coherence.

In the next experiment, we show the impact on query processing when using
between PCI-e 3.0 and NVLink 2.0. We contrast our implementation and baselines
using NVLink 2.0 with the same approaches using instead PCI-e 3.0. We consider
that the higher throughput of NVLink 2.0 results in a performance improvement
compared to the cases using PCI-e 3.0.

Furthermore, we investigate the effect of selectivity in comparison to the run
time performance and how data characteristics prove to be essential in considera-
tion of the query execution plan. We expect to see a linear growth in the increasing
selectivity factor of our query and that the execution times of both CPU and GPU
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are slower than that of our approaches.

Lastly, we investigate the performance speedup of our implementations based
on block size tuning and thread increment. We believe that in most of the cases
the single threaded CPU approach is slower than the multi-threaded. We examine
our approaches speed-ups in execution time with correlation to thread increment.
We also search the optimal block size for our pinned memory. We expect a linear
decrease in execution time over the increase of resources.

5.2.2 Interpretation of the Results

In this section, we present our experimental results and we interpret our findings.

Het execution times. In Figure 6, we depict the execution time of the Het
approaches and their baselines in the IBM AC922 with NVLink 2.0. As workload
we use the SSB Queries 1.1, 1.2 and 1.3 and our data-set of size 120GB (SF200).
The size of our data-set is bigger than the GPU memory and so we load the li-
neorder table in CPU memory. We use the date table (255MB), that is needed
for our join operation, for the creation of our hash table in which we transfer in
the GPU memory. We observe that the Het-implementations are much slower
than our baselines. More specifically we see that the GPU coherence approach
surpasses any other solution with over 2.5x faster execution time compared to the
the multi-threaded CPU. Also, we notice that the Heterogeneous approach which
uses zero copy is as fast as the lazy approach. Meanwhile, the eager pinned copy
seems to be the fastest. Even though, our performance numbers are lower than
that of the baselines, we believe that there’s possible room for improvement if al-
gorithms could be further fine tuned. In the pinned approach we did not consider
overlapping the transfer to the GPU memory and the function call of the GPU. A
suggestion made based on NVidia’s best practices article [21].

To further explain the unexpected behavior of the rest of our approaches we
broke down the experiments in two parts and did record their times. First part,
is the selection of that data that happens in the CPU memory and next is the
join operation that executes in the GPU memory. Based on Figure 7, we identify
that for the zero copy approach the CPU selection takes more than 90% of the
time. Meanwhile in lazy, we see that both operators take equally an excess of
time. We consider the possibility that the multi-thread of CPU may be the case
of that anomaly. However in the CPU-only approach we do not face this issue,
same applies for the GPU-only approach for which we use identical thread and
grid size. We suspect that this is due to the disadvantage of late materialization
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as explained from Abadi et. al.[4]. In their work, they claim that delaying tuple
construction can lead to multiple accesses and that there will be an extra CPU
cost scanning the block to extract the values to the given positions. They also
explain if the positions are not in sorted order then the cost can be substantial.
In our approaches, we access once to retrieve the needed data, we give the refer-
ence of our data to the GPU, and GPU re-access the given positions to extract
the values. Meanwhile, our baselines access the data only once for the selection
and the join operator. The next step for investigating even further this anomaly
and determining the most viable solution, is to profile the algorithm. This can be
done by collecting the trace of the system calls and more specifically, examining
the memory bandwidth, interconnect transfer volume and interconnect bandwidth.

NVLink 2.0 vs PCI-e 3.0. In this experiment we demonstrate the impact of
interconnects in query processing execution time. As workload we use Q1.1 from
SSBM and we vary our data-sets from SF 20 to 200 (12GB to 120GB). We observe
that in Figure 8 the execution time is 1.5-2x faster than the the PCI-e 3.0 (Fig-
ure 9). Except the peak of the zero copy that we notice over 4x slower than the
same approach in NVLink 2.0 for our biggest data-set. Meanwhile in Figure 10 we
demonstrate the same experiment as above by comparing our baselines. We notice
similar to the Het approaches our baselines that run in NVLink 2.0 have a 1.5-2x
faster execution time than the PCI-e 3.0 baselines. It comes to our attention, that
the peak in the biggest data-set in the Intel machine for both the baselines is close
to 6x times slower than the NVLink 2.0 baseline. Overall, we notice that we are
able to process queries, regardless of data size, in a faster rate than the PCI-e 3.0.

Join Selectivity. We demonstrate the effect of selectivity on query execution
time in Figure 12. We vary the selectivity of Q1.1 on our largest data-set from
0-100%. We compare our het approaches with the baselines and we pay attention
to the fluctuations of our execution time based on the selectivity percentage. We
observe that each approach behaves differently depending on the selectivity factor.
The zero copy and lazy approach follow a low linear growth from 0 - 75% , where
we notice a small drop down and at 100% we see the slowest query performance.
At the same time, CPU execution time declines even though the selectivity in-
creases and at 100% workload we notice that it peaks close to pinned copy. GPU
execution time is across all the different approaches the faster with a peak at 25%
which is close to the execution time of CPU. Overall, similar to Figure 6, we see
that the fastest approach regardless of the selectivity effect is GPU and then CPU.
We consider the same issue as explained above for the high execution times on the
het approaches.
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Figure 6: Query execution times of Heterogeneous implementations

Figure 7: Operator execution time per Het approach
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Figure 8: Query execution times of Heterogeneous approaches in IBM AC922 with
an NVidia Tesla V100-SXM2 NVLink 2.0

Figure 9: Query execution times of Heterogeneous approaches in Intel Xeon Gold
6126 with NVidia Tesla V100-PCIE
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Figure 10: Query execution times of baselines in IBM AC922 with an NVidia Tesla
V100-SXM2 NVLink 2.0

Figure 11: Query execution times of baselines in Intel Xeon Gold 6126 with NVidia
Tesla V100-PCIE
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Figure 12: The effect of selectivity in Query execution time
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Figure 13: Het Approaches Scale up

Figure 14: The effect of block size scale up in Heterogeneous Pinned Approach
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Lastly, we investigate the scaling factor of increasing the thread count in our
heterogeneous approaches and in the cpu baseline. We vary the thread count from
1-16. In Figure 13 we see a small linear decrease over the different heterogeneous
approaches until the 8 thread. After that we notice a slight increase. In the CPU
approach we observe more than a 2x speedup from 1 to 4 thread which steadily
drops down while the thread count increases. Considering the scale up of thread
we investigate the scale up of pinned block size and it’s effect on the performance
of the query. We increase the block size from 1MB to 8MB while running on 8
threads. As we can see from Figure 14 the scale up is minimal on the execution
time affect. So, in consideration block size does not the expected scale up and the
differences seem benign. Overall, in our heterogeneous approaches we see slight
decrease in the execution time regardless of the scaling up. We consider that it’s
a side-effect of the issue we demonstrated earlier.
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6 Related Work

In this chapter we contrast this thesis to state-of-the-art solutions. First, we dis-
cuss data processing on hybrid CPU-GPU architectures integrated into a single
processor package, then we point out other approaches to avoid the data trans-
fer bottleneck. Next, we look at different heterogeneous approaches and their
optimizations of database operators, finally we present the latest contributions re-
garding fast interconnects.

Hybrid CPU-GPU Architectures. Prior research has shown that task-
parallelism yields higher throughput in accelerated processing units (APUs) [35].
APUs combine CPU cores and GPU cores into a single processor, whereby the
GPU has direct access to the memory that limits the memory overhead and deals
with the transfer bottleneck of the interconnect. Even though coupled CPU-GPU
do not provide the high performance of dedicated GPUs, Jiong He. et al. [34]
claim that fine-grained co-processing methods on hash joins yield up to 53% per-
formance improvement over CPU-only, 35% over GPU-only and 28% over discrete
CPU, GPU architecture. Heterogeneous databases that parallelize operators across
multiple dedicated CPUs and GPUs, such as HetExchange [17, 29], claim higher
throughput than CPU-only databases. However as they transfer data over the
PCI-e interconnect, they are limited by the data transfer bottleneck.

In contrast to these works, we focus on heterogeneous task parallelism using
fast interconnects to enable high-throughput data transfers. In our approach, We
explore a heterogeneous CPU-GPU query plan that takes advantage of the high
bandwidth that fast interconnect offer, to resolve the transfer bottleneck and ex-
amine new efficient operator pipelines.

Transfer Bottleneck. Prior research investigates and optimizes database op-
erators on GPU’s [38, 28, 42] and mostly rely on transferring the data on the GPU
memory. Eventually this can lead to memory overhead. To overcome this issue,
Fang et al.[25] create a compression planner to choose the optimal compression
scheme with aim the increase of performance. Gubner et al. [30] exploit Bloom
filters to eliminate disqualifying tuples, as Bloom filters are smaller than hash ta-
bles. Bloom filter lookups are 6x faster on the GPU than on the GPU. In contrast,
in this thesis, we take advantage of the new interconnects to overcome the transfer
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overhead and adopt the cache coherence opportunities to gain better bandwidth
and latency on the CPU-GPU communication.

Database Operators. Hash Joins are considered one of the most commonly
used operators in DBMs. There are many studies on hash joins [46] mainly on
single [57][32] and multi-processor CPU’s [26]. Although, CPU databases are pre-
vailing the current research community, it is known that memory stalls have been
a major bottleneck in main memory databases [48]. Chen et al. [15] explores two
new prefetching techniques, group and software-pipelined prefetching, to hide the
memory latency. Blanas et al. [11] suggests that architecture tuning is important
for memory optimizations and explicity states that synchronization is an impor-
tant aspect that can affect the joins perfomance on multi-core CPUs. Balkesen, et
al. [14, 15] explore CPU-only hash join algorithms in-depth.

Additionally, to hash join on CPUs, there have been a research over the im-
provement of join performance on GPU’s [33][43]. Kaldewey, et al. [8] uses the
available PCI-e bandwidth to investigate the acceleration of join processing algo-
rithms for databases on GPUs with taking advantage of the UVA (Unified Virtual
Addressing), which gives access from the GPU into the CPU memory.

This study will visit the no-partition hash join that Blanas et al. [11] introduced
that requires a low latency interconnect and it has shown that this simple algo-
rithm works better with skewed data.

Fast Interconnects. To resolve the transfer bottleneck we are going to investi-
gate fast interconnects. In this thesis we show interest in NVLink 2.0. Li, et al. [45]
create a benchmark suite for evaluating GPU interconnects and demonstrate the
bandwidth advantage over PCI-e, plus points out the low latency. Likewise Pear-
son, et al. [52] examine different transfer methods and the significance of the high
bandwidth that NVLink offers. Lutz et al. [47] reveals the importance of NVLink
2.0 towards the acceleration of query processing, the evaluation shows up to 18x
speedup from PCI-e 3.0 and 7.3x over CPU and prove that Fast Interconnects
can overcome the scalability contraints. In contrast, this thesis will benchmark an
operator pipeline across three different systems: CPU-only, GPU-only, CPU-GPU
and will consider both PCI-e 3.0/NVLink 2.0.
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7 Conclusion

Prior research has shown that co-processing algorithms that utilize both CPU and
GPU resources in an optimal way, are able to increase query performance. How-
ever, the interconnect bandwidth’s limitation of transferring large scale data still
remains an unresolved issue. In this thesis, we investigated the potential increase
of the query performance in consideration of appropriate operator placement. We
examined three different heterogeneous implementation strategies where we as-
signed data-intensive operators to execute on CPU and compute-intense operators
on GPU. We used 3 different transfer methods, compared their performance and
did observe how the pinned copy outperforms the other approaches. We scaled
up the threads and block sizes used in the approaches and determined that the
increase of resources in the heterogeneous implementations plays only a minor role.
Meanwhile, we showed that the CPU performance increased dramatically. Addi-
tionally and even though our approaches did not surpass the baselines, we did
argue as to why it’s worth investigating the reason of this anomaly. We conclude
that a fast interconnect can have a big impact on query performance. We did
demonstrate an 2x speedup of our approaches and the baselines in NVLink 2.0 in
comparison with PCI-e 3.0. Additionally, we did evaluate the effect of selectivity
in query execution time. In this regard we showed that depending on the algo-
rithm and the processor used, the data characteristics play an important role in
the query execution time.

During our evaluation process we discussed some of the limitations that our
heterogeneous approaches have. We decided to document them for future work.

Heterogeneous Pinned Copy. Due to time constraints the pinned copy ap-
proach was not implemented as overlapping approach as stated by NVidia’s best
practices [21]. We suggest that it will be valuable to address that as an enhance-
ment of this approach.

Heterogeneous Zero Copy and Lazy. For the zero copy and lazy approach
we demonstrated a 5x slower execution time from GPU baseline. It’s worth inves-
tigating as to why this is happening, by profiling the algorithms and recording the
bandwidth used during run time.
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NVidia 2.0. In the current implementation we use the coherence that NVidia
2.0 offers to access the main memory. It’s worth investigating the performance
increase if the intermediate results are stored in cache and GPU accesses directly
the CPU cache.

Operator Pipeline. In this thesis we mainly focused on selection and join
operator. We believe that other operators can be investigated as well.

Column-store. We demonstrated our findings based on a column-store database.
As other similar research papers have investigated data compression, it would also
be interesting to add this aspect on possible future approaches.

Query Plan. In the current implementation we focus mainly on queries from
SSBM and our implementations are according to their characteristics. Creating a
more flexible decision-making heterogeneous query plan can be of great value for
future endeavors.
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[30] Gubner, T., Tomé, D., Lang, H., Boncz, P.: Fluid co-processing: Gpu
bloom-filters for cpu joins. In: Proceedings of the 15th International
Workshop on Data Management on New Hardware. pp. 1–10 (2019)

[31] He, B., Lu, M., Yang, K., Fang, R., Govindaraju, N.K., Luo, Q., Sander,
P.V.: Relational query coprocessing on graphics processors. ACM
Transactions on Database Systems (TODS) 34(4), 1–39 (2009)

[32] He, B., Luo, Q.: Cache-oblivious databases: Limitations and opportunities.
ACM Transactions on Database Systems (TODS) 33(2), 1–42 (2008)

[33] He, B., Yang, K., Fang, R., Lu, M., Govindaraju, N., Luo, Q., Sander, P.:
Relational joins on graphics processors. In: Proceedings of the 2008 ACM
SIGMOD international conference on Management of data. pp. 511–524
(2008)

[34] He, J., Lu, M., He, B.: Revisiting co-processing for hash joins on the
coupled cpu-gpu architecture. arXiv preprint arXiv:1307.1955 (2013)

[35] He, J., Zhang, S., He, B.: In-cache query co-processing on coupled cpu-gpu
architectures. Proceedings of the VLDB Endowment 8(4), 329–340 (2014)

[36] Idreos, S., Groffen, F., Nes, N., Manegold, S., Mullender, S., Kersten, M.:
Monetdb: Two decades of research in column-oriented database. IEEE Data
Engineering Bulletin (2012)

[37] Jia, Z., Maggioni, M., Staiger, B., Scarpazza, D.P.: Dissecting the nvidia
volta gpu architecture via microbenchmarking. arXiv preprint
arXiv:1804.06826 (2018)

[38] Kaldewey, T., Lohman, G., Mueller, R., Volk, P.: Gpu join processing
revisited. In: Proceedings of the Eighth International Workshop on Data
Management on New Hardware. pp. 55–62 (2012)

[39] Karnagel, T., Habich, D., Lehner, W.: Local vs. global optimization:
Operator placement strategies in heterogeneous environments. Computing 1,
O2 (2015)

[40] Karnagel, T., Habich, D., Schlegel, B., Lehner, W.: Heterogeneity-aware
operator placement in column-store dbms. Datenbank-Spektrum 14(3),
211–221 (2014)

36



[41] Karnagel, T., Hille, M., Ludwig, M., Habich, D., Lehner, W., Heimel, M.,
Markl, V.: Demonstrating efficient query processing in heterogeneous
environments. In: Proceedings of the 2014 ACM SIGMOD International
Conference on Management of Data. pp. 693–696 (2014)

[42] Karnagel, T., Müller, R., Lohman, G.M.: Optimizing gpu-accelerated
group-by and aggregation. ADMS@ VLDB 8, 20 (2015)

[43] Kim, C., Kaldewey, T., Lee, V.W., Sedlar, E., Nguyen, A.D., Satish, N.,
Chhugani, J., Di Blas, A., Dubey, P.: Sort vs. hash revisited: Fast join
implementation on modern multi-core cpus. Proceedings of the VLDB
Endowment 2(2), 1378–1389 (2009)

[44] Kitsuregawa, M., Tanaka, H., Moto-Oka, T.: Application of hash to data
base machine and its architecture. New Generation Computing 1(1), 63–74
(1983)

[45] Li, A., Song, S.L., Chen, J., Li, J., Liu, X., Tallent, N.R., Barker, K.J.:
Evaluating modern gpu interconnect: Pcie, nvlink, nv-sli, nvswitch and
gpudirect. IEEE Transactions on Parallel and Distributed Systems 31(1),
94–110 (2019)

[46] Lo, M.L., Chen, M.S.S., Ravishankar, C.V., Yu, P.S.: On optimal processor
allocation to support pipelined hash joins. ACM SIGMOD Record 22(2),
69–78 (1993)

[47] Lutz, C., Breß, S., Zeuch, S., Rabl, T., Markl, V.: Pump up the volume:
Processing large data on gpus with fast interconnects. In: Proceedings of the
2020 ACM SIGMOD International Conference on Management of Data. pp.
1633–1649 (2020)

[48] Manegold, S., Boncz, P.A., Kersten, M.L.: What happens during a
join?-dissecting cpu and memory optimization effects (2000)

[49] NVidia: Cuda - programming language (Nov 2022),
https://developer.nvidia.com/cuda-zone, Accessed on Feb 23, 2022
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Appendix

SSBM Queries

The SSBM queries [51] used in this thesis for the experiments.

select sum(lo_extendedprice*lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey

and d_year = 1993

and lo_discount between1 and 3

and lo_quantity < 25;

select sum(lo_extendedprice*lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey

and d_yearmonthnum = 199401

and lo_discount between4 and 6

and lo_quantity between 26 and 35;

select sum(lo_extendedprice*lo_discount) as revenue

from lineorder, date

where lo_orderdate = d_datekey

and d_weeknuminyear = 6

and d_year = 1994

and lo_discount between 5 and 7

and lo_quantity between 26 and 35;
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