
Technische Universität Berlin
Fakultät IV

DIMA

Fast CSV Loading Using GPUs and RDMA
for In-Memory Data Processing

Master Thesis
July 2020

Alexander Kumaigorodski
(319735)

Supervisor: Prof. Dr. Volker Markl
Advisor: Clemens Lutz

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit ohne Hilfe Dritter
und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe. Die
aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als
solche kenntlich gemacht. Die Arbeit wurde bisher in gleicher oder ähnlicher Form
in keiner anderen Prüfungsbehörde vorgelegt und auch nicht veröffentlicht.

Berlin, 31.07.2020 ____________________________
(A.Kumaigorodski)

Abstract

CSV is a widely-used format for data exchange. Due to its prevalence, virtually all
industrial-strength database systems and stream processing frameworks support
loading data from CSV input.

However, loading CSV data efficiently is challenging. Modern I/O devices such
as InfiniBand NICs and NVMe SSDs are capable of sustaining high transfer rates.
Fast interconnects, such as NVLink, provide the GPU high bandwidth to data in
main memory. At the same time, the semi-structured and text-based layout of CSV
is non-trivial to parse in parallel.

We propose to speed-up loading CSV input using GPUs. We devise a new
approach to parallelize parsing that can correctly handle CSV features that are
often neglected, in particular quotes. To efficiently load data onto the GPU from
network devices, we extend our approach with RDMA and GPUDirect. Our
evaluation shows that we are able to load real-world data sets at up to 60 GB/s,
thereby saturating high-bandwidth I/O devices.

Zusammenfassung

CSV ist ein weitverbreitetes Format für den Datenaustausch. Auf Grund dieser
Verbreitung, unterstützen praktisch alle Hochleistungsdatenbanksysteme und
Stream Processing Frameworks das Laden von CSV-Daten.

Dennoch ist das effiziente Parsen von CSV-Daten herausfordernd. Moderne
I/O-Geräte, wie InfiniBand-Netzwerkkarten und NVMe-SSDs, sind in der Lage
hohe Transferraten zu liefern. Schnelle Interconnects, wie z.B. NVLink, bieten der
GPU zu den Daten im Arbeitsspeicher eine hohe Bandbreite. Zugleich ist aber das
semi-strukturierte und textbasierte Layout von CSV schwer parallel zu parsen.

Wir beschleunigen das Laden von CSV mit Hilfe von GPUs. Wir entwerfen
einen neuen Ansatz zum Parsen, der oft vernachlässigte Eigenschaften von CSV,
insbesondere Anführungszeichen, korrekt verarbeitet. Um Daten effizient aus dem
Netzwerk zu laden, erweitern wir unseren Ansatz mit RDMA und GPUDirect.
Unsere Evaluation zeigt, dass wir in der Lage sind echte Datensätze mit bis zu 60
GB/s zu laden und damit die Bandbreite von schnellen I/O-Geräten ausschöpfen.

Acknowledgments

First and foremost, I would like to thank Clemens Lutz for advising me on my
thesis. His deep knowledge on GPUs, related research, and adjacent topics
throughout this thesis proved to be a valuable resource for information and
insight. He helped, inspired, and lead me. Thank you for all the time you have
taken out of your schedule to meet with me every week and for being an excellent
advisor.

Further, I would like to thank the primary author of ParPaRaw, Elias Stehle, for
not only providing their implementation but also taking the time to help make it
run with my evaluation data on the test machine.

Table of Contents

1. Introduction 1

2. Background 4

2.1 CSV ... 4

2.2 In-Memory Database Systems & Data Processing ... 6

2.3 GPGPU .. 7

2.4 CUDA .. 9

2.5 InfiniBand with RDMA & GPUDirect .. 24

3. Thesis Approach 26

3.1 Parallelization Strategy ... 28

3.2 Indexing Fields .. 30

3.3 Deserialization .. 33

3.4 Optimizing Deserialization: Transposing to Tapes .. 35

3.5 Streaming ... 37

4. Implementation 39

4.1 Components .. 39

4.2 Implementation Details ... 47

5. Evaluation 56

5.1 Experiment Setup ... 56

5.2 Results .. 62

5.3 Discussion .. 80

6. Related Work 81

7. Conclusion 85

7.1 Summary .. 85

7.2 Future Work .. 86

1

1. Introduction

Sharing data requires the source provider and the user of that data to agree on a
common file format for exchanging data. CSV (comma-separated values) is a file
format [1] for tabular data exchange that is widely supported by consumer,
business, and scientific applications. It is a plain text file with lines representing
rows and commas separating column values. As such, it trades performance and
size for simplicity [2] [3]. More efficient file formats exist (e.g. Apache Parquet
[4]), but they lack universal compatibility and are usually specific to their domain
or platform. With Big Data and ever-growing data sizes in data processing,
transferring and parsing CSV data increasingly becomes the bottleneck. To deal
with this large or complex data gained more interest in the field of Big Data as well
[5]. Most of these online data sets grow rapidly because they are constantly and
increasingly gathered by cheap and various sensors, such as IoT devices, mobile
devices, software logs, cameras, microphones, or RFID readers, and often stored as
CSV [6]. The amount of online data has roughly doubled every 40 months since
the 1980s, with currently over 2.5 exabytes of new data generated every day [6].

Motivation

Over the past decade, hardware evolved significantly. Previously, data processing
or moving data was the bottleneck due to insufficient I/O performance. Thus,
parsing data on the CPU was the overall fastest method. However, with new
technologies like GPUs, NVLink 2.0, RDMA (remote direct memory access), and
GPUDirect RDMA, moving data to the GPU is more efficient and not the
bottleneck anymore. Additionally, these new technologies provide new
opportunities for data parsing.

CSV parsing has traditionally been done on the CPU, with more advanced
applications utilizing SIMD instructions [7] [8]. As processing is done in parallel
on each of the cores, speeding up parsing further can only be achieved by scaling
up CPU cores. For their highly parallel processing capabilities with tremendous
computational power in comparison to CPUs [9], GPUs can already be used to

2

speed up data processing [10] [11]. Additionally, network interfaces can be scaled
up to achieve a higher bandwidth than the CPU’s interconnect, e.g. PCIe 3.0, can
provide for reading the CSV data.

In contrast to CPUs, however, GPUs are specialized for throughput instead of
latency. GPUs achieve high throughput by massively parallelizing computations.
However, CSV’s data format is challenging to parse in parallel. Finding line breaks
to parallelize by rows requires iterating over the entire data first.

Contributions

Previous work on GPUs does not consider end-to-end parsing from I/O devices. In
addition, previous approaches do not parallelize context-awareness but use
resource-intensive late context detection instead. These do not scale to rates
necessary for fast interconnects.

In this work we investigate strategies for parsing and deserializing CSV data in
parallel on GPUs. We propose a new early context detection approach, that
explores a new trade-off to gain efficiency. Our key insight is that the maximum
row length has a known upper bound in practice. This insight enables us to
parallelize chunking from the CPU-based approach by Mühlbauer et al. [7]. We
analyze the most efficient memory access patterns in regards to threads and multi-
level caches on the GPU. We adapt SSE 4.2 string specific SIMD instructions to
GPU-based variants or alternatives and analyze their performance and viability for
CSV parsing on GPUs. We implement an end-to-end parsing approach to offload
CPU-bound CSV loading to the GPU and thereby saturate I/O bandwidth. The
need for faster interconnects is underlined with performance of on-GPU parsing.
We also present an implementation to efficiently load data onto the GPU from
network devices using RDMA and GPUDirect. We show that even for small sized
CSV files, loading data using the GPU can be reasonable. Overall, our
contributions are:

 We propose a new approach to parallelize CSV parsing on GPUs.

 We analyze how to make the most efficient use of the CUDA platform
and the GPU’s architecture for CSV parsing.

3

 We show how to efficiently load data onto the GPU for end-to-end
parsing.

 We evaluate cases in which it makes sense to offload parsing to the GPU.

Outline

Here, we provide an overview of the content and describe the structure of this
thesis. In the next Chapter 2, we discuss the background. We give an overview of
CSV characteristics and in-memory databases. Then we describe how GPUs are
used for highly parallel processing in general and with CUDA specifically. In
Chapter 3, we introduce our theoretical approach for parsing CSV data efficiently
on GPUs using CUDA. The subsequent Chapter 4 shows the practical
implementation and introduces its components. Next, in Chapter 5 we show
comparisons and performance evaluations of some of our implementation
strategies as well as comparable CPU- and GPU-based CSV parser
implementations. In Chapter 6 we then present an overview of related research
areas and its related work. Finally, in the last Chapter 7, we conclude and present
possibilities for future work.

4

2. Background

In this chapter we give an overview of technologies and concepts significant to
understanding this thesis. We will first describe the CSV file format. Then, we
outline in-memory databases and their growth in popularity. We follow this up by
introducing GPUs for their highly parallel processing capabilities. An in-depth
overview of CUDA and its relevant details of the Volta architecture follows.
Finally, we show high-speed NICs with the ability to directly manipulate remote
memory.

2.1 CSV

CSV (comma-separated values) is a common file format [1] for tabular data
exchange that is widely supported by consumer, business, and scientific
applications and commonly used by databases for importing and exporting data. It
is a lightweight, plain-text data format that often fulfills the requirement of being
the least common denominator of information exchange.

According to the standard RFC 4180 [12], the CSV format can be recursively
defined as follows:

File = [Header CRLF] Record *(CRLF Record) [CRLF]

Header = Name *(Comma Name)

Name = Field

Record = Field *(Comma Field)

Field = (Quoted | Unquoted)

Unquoted = *Char

Quoted = DoubleQuote *(Char | "" | Comma | CR | LF) DoubleQuote

Char = Any character, except ", CR, LF, and ,

Comma = ,

DoubleQuote = "

An example of typical CSV data is shown in Figure 1. A CSV file can contain an
optional header that maps field names to the corresponding columns of the
records. Lines separated by CRLF (\r\n) represent records (rows), and commas
separate fields (columns). Each field is either quoted or unquoted. A field that

5

contains quotation marks ("), commas, or newline characters must be enclosed
quoted in double quotes. Furthermore, an embedded quotation mark must be
escaped by preceding it with another quotation mark. Whitespace characters are
not ignored and treated as part of the field value, i.e. putting a space after the
comma separating the fields, as is common in the English language, would result in
a leading space character for the succeeding field.

Figure 1: Typical view of a CSV file

While the RFC 4180 is widely considered to be the main reference for CSV
parsing, it is not an official specification, as the CSV format itself, despite its
popularity, has never been officially standardized. This is most likely due to the fact
that CSV was already first used in 1972 [13] and became popular by 1983 [14] but
no standardization attempts were made until the RFC 4180 in 2005.

It should be noted that some variations of the CSV format exist. These use other
delimiters for separating fields (e.g. tabs, pipes, or semi-colons instead of commas)
or use another character to escape embedded quotes (e.g. backslash). It is also
common for Linux-based software to export its CSV data with a simple LF (\n)
instead of CRLF (\r\n).

Massive amounts of data from a wide range of sources and applications is made
available this way. The Common Log Format1 and Extended Log Format2 are
standardized text formats in CSV that are used by web servers to generate log files
(e.g. for every file accessed by clients during page visits) as well as many other
applications that use CSV, or a variation thereof, for logging. In 2018, van den
Burg et al. [15] estimated that GitHub.com alone contains over 19 million CSV

1 W3C. Logging Control in W3C httpd. https://www.w3.org/Daemon/User/Config/Logging.html
2 W3C. Extended Log File Format. https://www.w3.org/TR/WD-logfile.html

6

files. Open government data repositories make their datasets increasingly more
available in the CSV format [16], some in excess of hundreds of gigabytes in size3 4.

Advantages of the CSV format include their portability and simplicity but at the
sacrifice of performance and file size [2]. More efficient formats exist (e.g. Apache
Parquet [4]) but they lack universal compatibility and are usually specific to their
problem domains or platforms.

In regards to correctly parsing CSV data, we consider a parser context-aware if it
can correctly determine whether an encountered comma is an actual field delimiter
or a character of a quoted string field. We classify late context detection as
determining the context only during parsing and early context detection as having
the context already discovered before parsing begins.

2.2 In-Memory Database Systems & Data Processing

To analyze or mine Big Data, its growth results in an increasing interest in data
processing, especially OLAP (online analytical data processing), and a need for
high-performance data loading and processing. However, in traditional databases
the hard disk has been the bottleneck [17]. Meanwhile, decreasing prices of
memory chips allowed server systems to be equipped with multiple terabytes of
main memory. By the end of 2008, main memory cost fell under $10,000 USD per
terabyte for the first time, as shown in Figure 2.

With these decreasing prices, in-memory databases became commercially
viable, e.g. MonetDB5. In contrast to traditional disk-based database management
systems, in-memory database management systems take advantage of the higher
bandwidth and lower latency of main memory to increase query performance [18].

3 Kaggle. https://www.kaggle.com/datasets?filetype=csv
4 NYC OpenData. https://data.cityofnewyork.us/browse?limitTo=datasets
5 MonetDB. https://www.monetdb.org/

7

Figure 2: Main memory prices between 1975 and 2020.

OLAP-type workloads typically involve complex analytical queries over the
entire data set. For this reason, column-oriented (in-memory) database systems
succeeded in their effectiveness and this led to the development of a series of
columnar data formats, e.g. Apache Parquet6, ORC7, Arrow8 [19].

Aside from main memory, the CPU is the new bottleneck in these systems [20].
Recent hardware developments, discussed in the next sections, have presented an
opportunity to further improve these CPU bottlenecks.

2.3 GPGPU

Computations, including CSV parsing, have traditionally been done on the CPU,
with more advanced applications even utilizing SIMD instructions. With the
advance of GPGPU (general-purpose computing on graphics processing units) for
its highly parallel processing capabilities with tremendous computational power in

6 Apache Parquet. https://parquet.apache.org/
7 Apache ORC. https://orc.apache.org/
8 Apache Arrow. https://arrow.apache.org/

8

comparison to CPUs9, more and more data processing is being done on GPUs [21].
They are specialized for compute-intensive and highly parallel computations with
transistors being devoted to data processing rather than data caching or flow
control as is the case for CPUs [9]. Entire database systems are running on GPUs
(e.g. Brytlyt10, SQream DB11), and GPUs are used to speed up traditional and in-
memory databases by offloading some of their data processing onto GPUs.

Modern GPUs are composed of multiple SMs (Streaming Multiprocessor), of
which each has dozens of dedicated cores and several types and layers of cache.
They are designed to be executed with the SIMT (Single Instruction, Multiple
Threads) model. On Nvidia GPUs, this is typically done in groups of 32 threads,
collectively referred to as warps.

Additionally, in comparison to the host machine’s main memory, modern
GPUs’ dedicated memory (VRAM) allows for far higher throughput of data
between processor and memory. Modern high-bandwidth memory technologies,
like HBM2, currently deliver up to 900 GB/s of peak memory bandwidth [22],
while modern DDR4 main memory can only provide a theoretical bandwidth of up
to 25 GB/s per channel12.

However, a major downside is that the VRAM’s capacity on GPUs is rather
limited in comparison to main memory on host machines. Current high-end GPUs
at most only provide 32 GB of memory13. As this is typically too small to store the
data of an in-memory database system, the relevant data needs to be transferred
from host memory to GPU memory for processing and, optionally, the results
copied back to host memory again. This is done over a comparatively slow
interconnect between the CPU and GPU.

The most common interconnect today is PCIe v3.0, providing a theoretical
maximum bandwidth of 15.8 GB/s14. In practice, however, throughput is typically
only around 12 GB/s [21]. A limited amount of GPUs already released with PCIe

9 “Theoretical GFLOP/s Intel CPUs vs. Nvidia GPUs” https://docs.nvidia.com/cuda/cuda-c-

programming-guide/graphics/floating-point-operations-per-second.png
10 “Brytlyt: GPU based PostgreSQL Database” https://www.brytlyt.com
11 “SQream DB: GPU-accelerated data warehouse” https://sqream.com/product/
12 JEDEC Standard. DDR4 SDRAM. JESD79-4B.
13 Nvidia V100. https://www.nvidia.com/en-us/data-center/v100/
14 PCI-SIG. PCI Express Base Specification Revision 3.0, 2010.

9

v4.0 and a theoretical maximum bandwidth of 31.5 GB/s15. With Nvidia’s protocol
NVLink 2.0 and its own interconnect NVHS (Nvidia High-Speed Signaling
Interconnect) an aggregated maximum bandwidth of 160 GB/s over four links is
supported [23].

2.4 CUDA

CUDA is Nvidia’s proprietary framework for their GPGPU pipeline and high-
performance computing. In contrast to prior APIs like DirectX or OpenGL, CUDA
provides an API with a focus on parallel programming. It gives developers a
software layer that provides direct access to the GPU’s virtual instruction set and
compute elements to execute GPU functions (referred to as compute kernels) with
an abstract view of the underlying architecture. In contrast to regular parallel
programming, CUDA exposes architectural features, such as memory hierarchies
and execution models, directly to the programmer. This enables finer control for
better optimization of heterogeneous massively parallel programming tasks. The
CUDA platform is accessible through CUDA-accelerated libraries, compiler
directives, APIs, and extensions to industry-standard programming languages,
including C/C++, Fortran, and Python.

The following sections will mostly focus on providing insight into CUDA
running on the Volta architecture (V100 accelerator on GV100 GPU). To some
extent, previous architectures (e.g. Pascal on GP100) may differ in their
implementation.

2.4.1 Thread Abstraction and Organization

A CUDA program consists of a combination of the host code that runs on the CPU
and device code that runs on the GPU. When a kernel is launched on the host side,
its device code’s statements are executed by the threads on the GPU. Threads
within a warp execute the same statement simultaneously. CUDA exposes a two-
level thread hierarchy abstraction, decomposed into grids of blocks and blocks of
threads, illustrated in Figure 3.

15 PCI-SIG. PCI Express Base Specification Revision 4.0, 2017.

10

Figure 3: CUDA execution model and its thread organization

CUDA implements the BSP (bulk synchronous parallel) model for its thread
architecture and requires structured parallelism workloads with much more tasks
than available hardware cores on the SMs to scale and run efficiently. This allows
CUDA to hide latencies caused by instructions and memory operations, as further
discussed in the subsequent sections.

The threads that are launched by a kernel are collectively called a grid. All
threads belonging to the same block can cooperate with each other by
synchronizing or using the SM’s shared memory space. The grids and blocks
represent a logical view of the thread hierarchy of the kernel. Because their
dimensionality affects performance, this abstraction allows to further optimize and
even efficiently execute the same application code on various devices with different
compute and memory resources.

While from a logical point of view it appears threads are executed concurrently,
from a hardware point of view not all threads can physically execute at the same
time. When a grid of blocks is launched (i.e. a kernel launch), the blocks are
distributed among SMs, partitioned further into warps, and scheduled for
execution. The number of warps per block can be calculated as follows:

11

������������� ∶= ���� �
�ℎ�������������

��������
�

Thus, the hardware always allocates a discrete number of warps for a thread block.
Conceptually, this is the granularity of work processed simultaneously by an SM in
SIMD fashion. If threadsPerBlock is not a multiple of 32, threads in the last warp
are left inactive. It is therefore important to optimize workloads to fit within these
boundaries to maximize utilization of the SM’s compute resources.

When a warp stalls (e.g. when waiting on a memory operation to complete), the
SM will switch to another eligible warp for execution to hide the latency that would
have been otherwise introduced from the stalling warp. Ideally, the occupancy of
SMs’ cores should be kept close to 100% with enough warps to keep the device
occupied:

��������� ∶= 100 ×
�����������

������������

2.4.2 Warp Divergence

CPUs try to keep back pressure in their instruction pipeline for maximum
hardware utilization. When encountering flow-control constructs, however,
branching occurs and the pipeline can no longer be filled with upcoming
instructions since it is not yet clear which path the application’s control flow will
take. Modern CPUs include complex hardware to try to predict the outcome of
these conditional branches for their pipelined architecture (i.e. branch prediction).
GPUs, however, are comparatively simple devices without complex branch
prediction mechanisms. All threads in the warp must execute the same instruction
in the cycle. This exposes a significant performance degrading problem when
threads in the same warp take different paths (i.e. warp divergence). If threads in a
warp diverge, the warp will serially execute each branched path while disabling
threads that do not partake in that branch. Code like if(cond){…}else{…} would
essentially cut the performance in half whenever at least one thread evaluates cond
differently than the other 31 threads. With more conditional branches, the loss of
parallelism would be even greater. To obtain the best performance, different
execution paths within the same warp should be avoided. This keeps the branch

12

efficiency close to 100%, which is defined as the ratio between non-divergent
branches and total branches:

�����ℎ���������� ∶= 100 × �
����������ℎ�� − ��������������ℎ��

����������ℎ��
�

Algorithms often need to be redesigned to achieve this. However, even simple
techniques like loop unrolling or rearranging data access patterns can reduce or
avoid warp divergence. More complex techniques, like thread-data remapping
[24], exist as well.

2.4.3 Memory Hierarchy

Data-intensive workloads are bottlenecked by how fast they can read and write
data. Thus, having higher bandwidth and lower latency memory would speed up
the workload’s performance. However, equipping hardware with a large amount of
such memory is not always technologically feasible or economically viable. In that
case, the memory architecture needs to achieve optimal latency and bandwidth
with the underlying memory hardware, including hard disks or flash drives, main
memory, caches, and registers.

When moving closer to the processor, the memory in the memory hierarchy
becomes progressively faster but also smaller in capacity. For data that is actively
being used by the processor, it is kept in that low-latency part of the memory
hierarchy. For later use of that data, it is stored in the high-latency/high-capacity
part of the memory hierarchy. CPUs and GPUs use similar models in their
memory hierarchy design with GPUs allowing for finer control of their behavior.
The L1 and L2 caches are examples of non-programmable memory in the CPU
memory hierarchy. In contrast, CUDA’s model allows many types of memory to be
explicitly programmed. CUDA’s memory model unifies the host’s and the device’s
memory hardware but still exposes the full memory hierarchy to allow optimizing
for highest performance and lowest latency with maximum capacity. We provide
an illustration of CUDA’s memory hierarchy model in Figure 4.

13

Figure 4: CUDA memory hierarchy model

Each has a different scope, lifetime, and caching behavior. While threads have their
own private local memory (registers and spilled register data in global memory),
blocks have their own shared memory space that is visible to all threads belonging
to that block throughout its lifetime. The principal traits of various memory types
are shown in the following table:

Memory Location Cached Access Scope Lifetime

Register on chip - R+W Thread Thread

Local VRAM L1 R+W Thread Thread

Shared L1 - R+W Block Block

Global VRAM L2 (L1 opt.) R+W All + host Application

Constant VRAM Yes R All + host Application

Texture VRAM L1 R All + host Application
Figure 5: Salient features of device memory (V100)

14

Registers. This is the fastest memory space on a GPU. Variables declared in a
kernel are generally stored in a 32-bit register. Dynamically allocated arrays are
always directly spilled to local memory. While register variables may be shared
across threads in a warp using Warp Shuffle Functions16, its contents are otherwise
private to their respective thread and can no longer be accessed once a warp is
finished with the kernel. Given the large number of threads that may run on an
SM, its registers are a rather scarce resource (65,536 per SM on V100) and limited
to 255 per thread. Should a thread exceed its limit or a block exceed the SM’s
resources, registers will be spilled into the much slower local memory. Conversely,
threads with few registers used allow for more blocks to reside on the SM, which
can increase occupancy and improve performance.

Local Memory. Variables from a kernel that were not eligible for or did not fit
into the register space will spill into this memory space. Contrary to its name, it is
merely reserved space in the VRAM and as such it is subject to the same high
latencies and low bandwidths as global memory. In contrast to global memory,
however, it is per default cached in the L1 cache.

Shared Memory. Variables declared __shared__ in a kernel are stored on the
same physical location as the L1 cache. It shares its lifetime with its thread block.
Similar to the CPU L1 cache, it has a much higher bandwidth and much lower
latency than global memory but is also programmable. Its main purpose is inter-
thread communication using synchronized data access (e.g. using
__syncthreads() or __syncwarp()) or as a software-managed cache. On Volta, up
to 96 KB can be configured for use as shared memory per SM, limited by the 128
KB unified cache. When a thread block is finished with the kernel, its allocation of
shared memory is released for new thread blocks to use.

Global Memory. This is the largest memory space on a GPU (either 16 or 32 GB
on V100) with the highest latency and lowest bandwidth. It can be accessed from
any kernel and from any SM at any time throughout the application's lifetime. It is
usually allocated and managed by the host with address pointers passed to kernels
as parameters. Data can be copied from and to the host’s main memory in a similar
fashion to memcpy(), using cudaMemcpy() or cudaMemcpyAsync() on the host. If the

16 Nvidia. CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#warp-shuffle-functions

15

host’s memory is not pinned, CUDA will first allocate pinned memory on the host
as a temporary staging area to transfer the data into before copying it to or from
the device to avoid unsafe data access in case the operating system needs to
physically move that memory page during a transfer. When reading or writing to
global memory from a kernel, optimizing memory transactions are vital for
obtaining maximum performance (see next section). For better performance, data
from global memory is cached in L2 per default. Data that is read-only for the
entire lifetime of a kernel can also be cached in L1 using __ldg() or hinted to the
compiler with const and __restrict__ variable modifiers, if the compiler hasn’t
already detected the read-only behavior through static code analysis. Addresses for
memory operations need to be aligned, i.e. a thread accessing a data type of n bytes
requires its address in global memory to be a multiple of n.

Constant Memory. Global variables declared __constant__ are stored in the
VRAM but cached in a dedicated 2 KB read-only constant cache on the SM, similar
to L1 [25]. It is a latency optimized read-only memory space for threads within a
warp accessing the same address simultaneously, e.g. when accessing a coefficient
for a mathematical formula. Concurrently reading data from different addresses
within a warp results in a severe performance penalty. Data in constant memory
must be initialized by the host before kernel launch.

Texture Memory. A memory space optimized for 2D spatial locality with
support for hardware filtering and interpolation. It is not relevant to this work and
we include it here solely for the sake of completeness.

L2 Cache. A fast, global, 6 MB sized cache for all SMs on Volta. It caches global
memory reads and writes with a cache line size of 128 bytes, divided into four 32
byte sectors. It is worth noting that contrary to Nvidia’s Volta documentation [22],
some sectors might be empty in the cache line. A cache miss in one of these sectors
will not cause a load of the entire 128 byte cache line from global memory but only
the lower or upper two sectors of the cache line, as found by Jia et al. [25] and
confirmed by an Nvidia employee17. Implicitly, L2 is also used to cache
instructions, constant data, and for the TLB (translation lookaside buffer).

L1 Cache. A very fast, 128 KB sized unified data cache on every SM on Volta.
The memory space is shared with the shared memory space, which can be

17 Nvidia Developer Forums. https://forums.developer.nvidia.com/t/pascal-l1-cache/49571/20

16

configured to take up to 96 KB, leaving 32 KB for L1 cache data. When configured
to cache global memory reads, it also uses a cache line size of 128 bytes, similarly to
L2.

To better understand each memory space’s performance impact and put them
into perspective, the table below provides latency and bandwidth comparisons
filled with data from the official Nvidia Volta Architecture whitepaper [22] and
data collected by Jia et al. [25] using micro-benchmarking on a V100-based GPU.
For on-chip memory the bandwidth is the combined bandwidth of all 80 SMs on
the V100 to make a direct comparison with off-chip memory possible. Even
though L1 and shared memory are in the same physical location, we speculate their
difference in latency is most likely due to the additional cache management
overhead required for L1 data.

Memory Latency Bandwidth (Combined)

Registers (e.g. FMA) 4 cycles (e.g. FMA) ~58,000 GB/s

L1 ~28 cycles ~12,000 GB/s

Shared ~19 cycles ~12,000 GB/s

L2 ~193 cycles ~2,155 GB/s

VRAM ~1029 cycles ~750 GB/s
Figure 6: Performance comparison of memory types (V100)

2.4.4 Memory Access Patterns

As shown in the previous section, accessing global memory is relatively slow in
regards to latency and bandwidth in comparison to the other memory spaces.
Since most data access in applications begins or ends here, it is therefore important
for a kernel to fully saturate the GPU’s memory bandwidth whenever possible.

The global memory space is segmented into sectors of 32 bytes. Read/write
operations are issued per warp, where each thread provides an address. With these
addresses, CUDA then calculates how many memory sectors it needs to access and
creates memory transactions based off of that. Each memory transaction can
consist of one, two, or four consecutive 32 byte memory sectors. Ideally, each and

17

all of these 32 bytes were requested by the warp, i.e. the number of bytes requested
is close or equal to the number of bytes actually moved by the hardware:

���_���������� ∶=
��������������������������ℎ����ℎ���

�������������������������ℎ����ℎ���

Since global memory reads/writes are staged through caches and the fact that L2’s
cache line size is 128 bytes, a warp requesting these 128 bytes could potentially be
served with only a single memory transaction from global memory.

Depending on the warp’s distribution of memory addresses, memory access can
be categorized into different memory access patterns. The ideal access pattern to
global memory is the aligned and coalesced access pattern, i.e. Figure 7. Aligned
access requires the address of the requested memory to be a multiple of 32 as the
global memory space is segmented into sectors of size 32 bytes. A misaligned load
will cause wasted bandwidth, since irrelevant bytes from the memory sector had to
be physically transferred, as illustrated in Figure 8. Coalesced access refers to
consecutive bytes requested by the threads in a warp. Combining these two
patterns yields the best case scenario. In contrast, seemingly random access to
memory within the warp yields the worst case scenario, as shown in Figure 10.
Similarly, accessing the same data, i.e. Figure 9, does not make good use of the
available bandwidth, as bus utilization is very low.

Figure 7: Ideal case, aligned and coalesced access. Addresses required for the 128 bytes requested

fall within four sectors. Bus utilization is 100% with no loads wasted.

18

Figure 8: Coalesced but misaligned access. Warp requests 32 consecutive 4 byte elements but not
from a 128 byte aligned address. The addresses fall within at most five sectors but six sectors are

loaded. Bus utilization is 66.67%.

Figure 9: All threads in warp request same 4 byte data. The addresses fall within one sector but

two sectors are loaded. Bus utilization is merely 6.25%.

Figure 10: Worst-case scenario. 4 byte loads are scattered across 32 addresses in global memory.

Write operations behave similarly to read operations in regards to access
patterns and memory transactions. They are stored in the L2 cache before being
sent to the VRAM.

19

2.4.5 Shared Memory Banks and Access Patterns

When dealing with global memory, good performance can be achieved by using
optimized access patterns so they are aligned and coalesced with no wasted
memory transactions. For cases where aligned memory access is not possible, the
L1 and L2 cache can mitigate performance issues. But memory access that is not
coalesced and is scattered throughout global memory will still cause performance
degradation and poor bandwidth utilization. Shared memory can help improve
global memory access in many such instances.

For example, when transposing a 2D-matrix in global memory directly you will
have non-coalesced access, regardless if the data in global memory is laid out as
rows-of-columns or columns-of-rows. Using shared memory to cache data from
the original matrix, one could avoid this strided global memory access. A column
from shared memory can then be transferred to a transposed row in global
memory.

Shared memory can also be used for threads within a warp or thread block, to
cooperatively operate on temporary data in-memory. For example, a temporary
prefix-sum over input data in a preparation step inside the kernel.

The shared memory space is partitioned among all thread blocks on an SM and
a critical resource that can limit kernel occupancy. Access operations to shared
memory are issued per warp and special care needs to be taken. While physically
the shared memory is arranged in a linear manner, its access is divided into 32 four
byte wide memory banks, as illustrated in Figure 11, that can be accessed
simultaneously.

Figure 11: Mapping physical bytes to shared memory bank indexes

20

If a warp’s memory operations do not access more than one memory location per
bank, they can be serviced by one memory transaction, as shown in Figure 12 and
Figure 13. Otherwise multiple memory transactions need to be issued, which will
decrease shared memory bandwidth utilization.

Figure 12: Optimal parallel access pattern. No bank conflicts, every thread accesses a different

bank. Maximum bandwidth utilization.

A bank conflict occurs when multiple addresses of memory operations within a
warp fall into the same memory bank, as illustrated in Figure 14. CUDA will split
the memory operations into separate conflict-free memory transactions. With
every additional memory transaction, the effective bandwidth is reduced by a
factor equal to the number of total transactions. Multiple threads accessing the
same address in the same bank can still be served with only a single memory
transaction, however, since the accessed data in that bank is simply broadcast to all
requesting threads afterwards.

Figure 13: Irregular access pattern. No bank conflicts, because every thread still accesses a

different bank. Maximum bandwidth utilization.

21

Figure 14: Irregular access pattern. Several bank conflicts with mutliple threads accessing the same

bank. Conflict-free broadcast access only possible if threads access the same address within the
bank. Poor bandwidth utilization.

The bank a shared memory operation is mapped to can be calculated as follows
below. An address is divided by four to convert it to an index, since memory banks
are four bytes wide, followed by the modulo operation with the total number of
banks, 32:

���������(�������������) ∶=
�������������

4
 mod 32

2.4.6 Streams

A CUDA stream (cudaStream_t) consists of an ordered sequence of host issued
asynchronous CUDA operations to be executed on the device. By default, all
CUDA functions implicitly use the NULL-stream. By using additional explicitly
specified streams to launch multiple simultaneous kernels, we can implement grid
level concurrency, allowing us to overlap execution of operations.

Figure 15: Example of using three CUDA streams to evenly distribute work

22

A typical pattern in a CUDA program is to first transfer input data from the
host to the device, execute a kernel on that data, and then transfer the results back
to the host. Instead, we can overlap the data transfer with kernel execution, thus,
hiding some of the cost of the data transfer while performing useful work at the
same time. We illustrate this pattern in Figure 15.

23

2.4.7 Code Comparison

The below code shows a shortened example of a CUDA kernel summing up arrays
a and b and storing the results in array c:

...

void vectorAdd_CPU(int *a, int *b, int *c, int n)

{

 for(int i=0; i<n; ++i)

 c[i] = a[i]+b[i];

}

__global__

void vectorAdd_GPU(int *a, int *b, int *c)

{

 int i = threadIdx.x;

 c[i] = a[i]+b[i];

}

int main()

{

 constexpr int arraySize = 1024;

 ...

 //calculate sums on host

 vectorAdd_CPU(a, b, c, arraySize);

 ...

 //calculate sums on GPU

 constexpr int gridSize = 1;

 constexpr int blockSize = arraySize;

 vectorAdd_GPU<<<gridSize, blockSize>>>(a, b, c);

 cudaDeviceSynchronize();

 ...

}

As seen, programming CUDA kernels can be very similar to programming regular
C/C++ functions. To allocate or transfer data to the GPU, CUDA provides several
functions similar to C’s own malloc(), free(), memcpy(), memset() etc.

24

Calling host classes and functions from device code is not possible, including
the C’s Standard Library or the C++’s Standard Library. While some ported
functions are included with CUDA (e.g. printf()), data structures and algorithms
need to be re-implemented and most likely redesigned to work efficiently in
CUDA.

2.5 InfiniBand with RDMA & GPUDirect

InfiniBand is a networking communication standard used in high-performance
computing [26]. Similar to Ethernet, it is used as an interconnect between servers
or storage systems. It features a very high throughput of up to 50 Gb/s per link
with latency below 0.5 µs18. Upcoming InfiniBand versions with up to 250 Gb/s per
link are already planned19. Typically, four links are aggregated on most systems for
improved bandwidth. Aggregated links of eight or twelve are possible but normally
used for clusters or supercomputers. When compared to the bandwidth of regular
main memory, it becomes clear that network bandwidth is no longer the
bottleneck in previously network bound applications. In such a scenario, assuming
the NIC is a PCIe-based device, PCIe itself can become the new bottleneck [27].

In the past years, RDMA (Remote Direct Memory Access) capable network
cards have decreased in price and made their way into datacenters. InfiniBand
supports RDMA, which is a feature that allows direct access to the main memory
of a remote host with little or no CPU overhead. Requests are sent directly to the
NIC without involving the kernel and are serviced by the remote NIC without
interrupting the CPU.

GPUDirect extends this concept to the GPU. It allows remote hosts to directly
access the GPU’s memory for reading and writing, thus bypassing the main
memory of the host machine.

However, most systems still rely on Berkeley sockets, even though several cloud
services already provide RDMA-enabled devices [28]. A reason is believed to be
ease of use [28]. For InfiniBand’s RDMA, the low level ib_verbs API has to be used.

18 Mellanox Technologies. InfiniBand Essentials Every HPC Expert Must Know.

http://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1/1_Mellanox.pdf
19 InfiniBand Trade Association. InfiniBand Roadmap. https://www.infinibandta.org/infiniband-

roadmap/

25

Before being made available for remote access, the memory region also needs to be
pinned so the OS kernel does not page out the memory region. Client and server
processes need to coordinate and have to be converted to use these RDMA-specific
techniques.

Nevertheless, for transferring data between nodes this allows for very efficient
zero-copy transfers in comparison to the typically used sockets, which require the
data to be copied between buffers and the involvement of the kernel and CPU on
both hosts [27].

26

3. Thesis Approach

In this chapter we introduce a new algorithm for parsing CSV data that is
optimized for GPUs. When designing our approach, we focused on the hardware’s
main advantages and how to make use of them. Optimizing for GPUs is
challenging, because parsers typically have complex control flow. However, fast
GPU kernels should regularize control flow to avoid execution penalties caused by
warp divergence. Therefore, our approach explores a new trade-off: we simplify
control flow at the expense of additional data passes and, thus, more memory
bandwidth. Overall, our approach adapts CSV parsing to fully utilize the GPU’s
architecture. This includes its very high memory bandwidth, low cache latencies,
and high parallelism. Simultaneously, we focused on the hardware’s shortcomings
and how to work around them. Mainly branching, warp divergence, and inactive
threads.

We first give a conceptual overview of our approach using the flowchart in
Figure 16. Each step is then described and discussed in more detail with its
challenges and solutions in the following sub-chapters.

Figure 16: Conceptual overview of our approach

27

Conceptually, the CSV input data is first transferred onto GPU memory from a
data source, such as main memory or an I/O device. The input data is then split
into equally sized chunks to be processed in parallel. With the goal to index all field
positions in the input data, we first count the delimiters in each chunk and then
create prefix sums of those counted delimiters. Using these prefix sums, the chunks
are processed again to create the FieldsIndex. This allows the input data to be
copied to column-based tapes in the next step. Tapes enable us to vectorize
processing by transposing multiple rows into a columnar format. Finally, each tape
is deserialized in parallel. The resulting data is column-oriented and can then be
further processed on the GPU or copied to another destination for further
processing, e.g. to the host’s main memory.

In this default Fast Mode, the parser may be unaware of the correct quotation
scope when fields are enclosed in quotation marks. Fields may themselves contain
field delimiters, resulting in an incorrect FieldsIndex. To mitigate this problem and
create a context-aware FieldsIndex, we introduce the Quoted Mode. It is an
alternative parsing mode with early context detection, that additionally keeps track
of quotation marks and allows us to parallelize parsing of quoted CSV data but is
more processing intensive than the default parsing mode. The main focus of our
work is on the default Fast Mode, however, as well-known public data sources
indicate that quotes are rarely used in practice20 21.

For now, we will assume the CSV input data already resides in GPU memory. In
the last sub-chapter, we will present Streaming, which allows incoming chunks of
data to be parsed without the need for the entire input data to be on the GPU.

Overall, our data-parallel CSV parser solves three main challenges: partitioning
the data into chunks for parallel processing, determining each chunk’s context, and
fast deserializing of fields with their correct row and column number in parallel.

20 Kaggle. https://www.kaggle.com/datasets?filetype=csv
21 NYC OpenData. https://data.cityofnewyork.us/browse?limitTo=datasets

28

3.1 Parallelization Strategy

One of the GPU’s strengths lies in highly parallel processing, making it an ideal
platform for problems in which data can be split for parallel computations.
However, text-based data formats, such as CSV, are challenging to parse in parallel.

Load Balancing Warps. Parallelizing by rows requires iterating over the entire
data first and will also result in unevenly sized row lengths. This will cause
subsequent parsing or deserialization threads in a warp to stall during individual
processing and, thus, not make maximum use of the hardware. Instead, Figure 17
shows how we naively split the input data into equally sized chunks that are
independent of each other and individually processed by a warp.

Figure 17: Splitting input into equally sized, independent, chunks

This allows all threads in a block to keep busy as they transfer and process the same
amount of data. And because of the chunks’ spatial locality and equal sizes, all
warps within a block are subject to the similar or even same latencies when
transferring their data from global memory or L1/L2, further reducing unnecessary
delays within a thread block, thus, allowing a new block to run sooner on the SM.

29

Parallelization Granularity. The choice of chunk size and how a warp loads and
reads its chunks impacts the parallelizability of the delimiter-counting process and,
ultimately, the entire parsing process. Because a warp has 32 threads, the smallest
reasonable chunk size is 32 bytes. This gives every thread in a warp exactly one
character to look at and check whether it is a delimiter or not. However, as L1’s
and L2’s cache line size is 128 bytes and a single memory transaction can serve up
to four consecutive 32 byte sectors, i.e. 128 bytes, increasing the chunk size to at
least 128 is plausible. This will give each thread in a chunk four bytes to look at,
either four consecutive bytes or four individual bytes in a 32 byte stride. At first
glance, increasing the chunk size further past 128 bytes seems counter-productive,
as that could increase resource usage by every thread block and, thus, reduce
overall parallelizability. However, common optimization techniques like loop
unrolling prove that an application’s execution speed can often be reduced at the
expense of data size, essentially a space-time tradeoff. As such, having a warp
process multiple consecutive 128 bytes in a loop could overall reduce processing
times. CUDA’s scheduler for warps and blocks will have less overhead, as well as a
reduced overhead associated with the launch of every new thread block or warp,
e.g. calculating a warp’s chunk ID.

Vectorization. To analyze these access patterns and identify chunk sizes that
allow for the most optimal loading and processing, we implemented several kernels
that each load chunks at different sizes. We defer further details to Chapter 5.2.1.
Going forward, the forceful loading of four consecutive bytes as an int to a register
will be our strategy for loading and accessing the chunks.

One caveat of our chosen strategy is that the last thread of the last chunk will
cause a memory access violation for input data that is not a multiple of 128 bytes.
While threads within the last warp can simply calculate if they are still in bounds to
load their four bytes, the last valid thread would need to first check for the number
of remaining bytes and then take an alternative path that accesses the one, two, or
three remaining bytes individually. This would not only add complexity to the
code but also an additional branch and potential warp divergence, resulting in a
drop in performance. Instead, we pad the input data with NULLs to a multiple of
128 bytes during input preparation. Conventionally, strings are NULL-terminated,
so any such occurrence in a thread, or even external applications, will simply cause
these padded bytes to be ignored during loading or later parsing. This not only

30

avoids the additional branch to check for the availability of all four bytes but also
the branch needed to check whether a thread within a warp is still in bounds for
the warp’s current loop iteration.

3.2 Indexing Fields

We can now start processing the chunks. Our end goal in this phase is to have all of
the field positions of the input data indexed in the FieldsIndex. This index will be
an integer array of yet unknown size rows*columns with a sequence of continuous
field positions. This is a three-step approach.

In the first pass over the chunks, every warp counts the number of field
delimiters in its chunk. The number of delimiters in each chunk is stored in an
array. For optimization purposes, record delimiters are treated as field delimiters,
thus, creating a continuous sequence of fields. A field’s row and column numbers
can later be inferred with:

���(����������) ∶= ����� �
�����������

����������
�

������(����������) ∶= ���������� mod �������

In the second phase, we compute the chunks’ field offsets with an exclusive
prefix sum, as illustrated in Figure 18.

Figure 18: Computing the field offset for every chunk using a prefix sum

At the end of the prefix sum calculation, the total number of fields is automatically
available, and consequently rows, so the necessary space in global memory for the
FieldsIndex array can be allocated.

In the third and final phase, the FieldsIndex can now be filled in parallel. We
perform a second pass over all the chunks and scan for field delimiters again. The

31

GPU memory’s high bandwidth keeps the performance penalty of additional
passes over data comparatively low. As shown in Figure 19, using the prefix sum at
a chunk’s position, the total number of preceding fields in the input data can
instantly be inferred.

Figure 19: Using the chunk’s prefix sum to infer number of preceding delimiters

We efficiently compute the FieldsIndex using millions of warps. To have a thread
correctly determine a field’s index when encountering its delimiter, it needs to also
know how many delimiters the warp’s preceding threads already had and will have.
So, for every 128 byte loop iteration over the chunk, threads first count how many
delimiters they have in their respective four byte sector. Since threads within a
warp can efficiently access each other’s registers, calculating an exclusive prefix
sum of these numbers is fast and will now result in the complete information
needed to determine a field’s exact position and index to store it in the FieldsIndex
array, with i being the i-th byte of the four byte sector:

�������� ∶= �ℎ����� × �ℎ������� + ������ × 4 + �������� × 128 + � + 122

������������ ∶= �ℎ������������[�ℎ�����] + �������������[������] + ��23 + 1

����������� ∶= 0

The complete FieldsIndex then allows to not only instantly look up a field’s
position in the input data, but also its length:

����������ℎ(����������) ∶= �����������[���������� + 1] − �����������[����������] − 1

22 Adding one gives us the position of the actual field instead of the encountered delimiter
23 di is the running count of delimiters in this four byte sector, for cases where it has more than one

32

Quoted Mode

For the Quoted Mode, a few additional steps need to be taken throughout to create
a correct FieldsIndex. When counting delimiters in the first phase, quotation
marks are also counted in a similar manner simultaneously. After calculating the
prefix sums for the delimiters, the prefix sums for the quotation marks are created
as well. In the third phase, during the second pass over the chunks, quotation
marks are also counted again along the delimiters and prefix sums are created for
both within the warp. We can now exploit the fact that a character is considered
quoted whenever the number of preceding quotation marks is uneven. So, now
before writing a field’s position into the FieldsIndex when encountering a field
delimiter, first the number of total preceding quotation marks at this position is
checked. Should that number be even, the field’s position to the FieldsIndex is
written as before, regardless of how many preceding quoted field delimiters exist.
Otherwise, a sentinel value of 0 is written to the FieldsIndex at the index the field’s
position otherwise would have been written to, representing an invalid field
delimiter. After the FieldsIndex is created, a stream compaction pass is done on the
FieldsIndex to remove all invalid, i.e. quoted, field delimiters and remove gaps
between valid, i.e. unquoted, field delimiters. We illustrate an example with valid
and invalid field delimiters in Figure 20.

Figure 20: Additional pass in Quoted Mode to remove invalid delimiters

Doing this additional step separately instead of during the actual FieldsIndex
creation, removes the complexity from the kernel that would otherwise introduce
significant processing delays due to branching, warp divergence, and non-
coalesced memory write operations.

We classify this approach as early context detection.

33

3.3 Deserialization

Efficient deserialization on the GPU is a many-sided problem. Not only is the
question of how to parallelize deserialization challenging, but also how to keep the
entire warp occupied while doing so.

A naive approach is to have every thread deserialize a field. However, we must
assume that neighboring columns have different data types. So, constructing a
generic kernel that can handle all data types involves many branches, causing warp
divergence. Instead, we explore three different approaches to avoid warp
divergence: row-based using Dynamic Parallelism, column-based with grouped
warp lanes, and column-based with maximum column lengths.

Approach: Dynamic Parallelism (Row-Based)

To allow parallelization and have threads in a warp deserialize different data types
without warp divergence, we experimented with an approach that involves
Dynamic Parallelism in CUDA. Dynamic Parallelism allows a kernel to launch
another kernel and even synchronize on this newly nested work. In our approach,
a generic deserialization kernel reads a field in every thread and, based on its data
type, launches a specific deserialization kernel with a grid size of one and a block
size of 32. For integers, every thread looks at one character, converts it to a digit,
and multiplies it by 10��������������������. The warp’s sum of these numbers is the
resulting deserialized integer. Using this approach, we could potentially skip
writing out the FieldsIndex in the previous step and instead just directly launch the
appropriate deserializer kernel when encountering a field delimiter.

While this is a very inefficient use of resources, since a field of length five would
result in 27 unoccupied threads, initial testing showed performance to be above
PCIe v3.0’s bandwidth. However, performance drops instantly when the input data
grows to a few thousand fields that need to be deserialized. CUDA’s scheduler uses
a launch buffer in global memory to keep track of pending kernel launches. Once
this buffer is full, it uses a virtualized buffer in the host’s main memory [29].

This Dynamic Parallelism approach quickly saturates the native buffer with
scheduled deserialization kernels for each field, leading CUDA to fall back to the

34

much slower virtualized buffer. While CUDA offers the possibility to increase the
buffer on the GPU, this approach does not scale well.

Approach: Grouped Warp Lanes (Column-Based)

It becomes clear that using any row-based approaches requires adding lots of
complexity to work in parallel. Complexity that is likely to cause idle threads. Any
approach that is column-based, however, can make use of the fact that all fields in
the column have the same data type, thus, giving us an easy pattern to parallelize
on. While such an approach would not utilize the available bandwidth very well,
given a GPU’s high memory bandwidth, it is expected to be the most optimal
solution.

Building upon the deserializer from our Dynamic Parallelism approach, we
implemented a column-based deserializer kernel that can make use of all threads in
a warp. For integers of length eight, this means the warp can be divided into four
sub-groups, each deserializing one field of the same column. Instead of 32 threads
working on deserializing one number, this approach has these 32 threads working
on four numbers simultaneously using the same instructions, thus, keeping the
occupancy much higher without warp divergence and making much better use of
the available hardware. The cost of calculating each lane’s exponentiation of base
10 remains relatively high, however. Using the fast constant memory space for a
memoization technique is not viable, since accesses to constant memory need to
have a unique address within the warp to be efficient.

Approach: Columns with Maximum Lengths

To remove the cost of determining each lane’s exponentiation of base 10 and the
cost of cooperatively calculating a sub-group’s sum, we extend our above approach
with an alternative solution. Every thread in the warp deserializes one field,
allowing the entire warp to deserialize 32 fields in parallel. Similar to SQL’s DDL
(Data Definition Language), users of CUDAFastCSV specify a column’s maximum
length along its type for deserialization purposes. To keep the warp’s memory
access pattern optimal, every thread first consecutively reads four aligned bytes
into a dedicated register until enough bytes were read to satisfy the specified length

35

of the column. When all column fields are contiguous in memory, this will also
cause the warp to read the data in an aligned and coalesced fashion with a high
bandwidth utilization, serving the entire warp with just one memory transaction.
In a loop equal to the size of the specified column length, every thread can now
read and convert each digit from a register while calculating the running sum, as
illustrated in Figure 21.

Figure 21: Thread reading aligned bytes to register for looped deserialization

While this approach can still leave some threads in the warp early with no work,
i.e. when neighboring fields in a warp are of various length, this approach causes
no warp divergence and only uses one branch in its entire kernel.

We identified this approach as the fastest deserialization strategy for our
algorithm by implementing all three approaches as kernels for comparison. We
defer further details to Chapter 5.2.1.

3.4 Optimizing Deserialization: Transposing to Tapes

Since our deserializer uses a column-based approach, its memory access pattern
only allows for a coalesced and aligned memory access with full use of all the
relevant bytes when given the optimal circumstances. CSV, however, is a row-
oriented storage format. The optimal circumstances would come only into effect
when there is just one column in the input data or when the field’s data types are

36

identical along a multiple of 32 wide field count. For columns of various data types
performance decreases significantly. In Figure 22 we illustrate this.

Figure 22: Column-based deserialization performance scaling for unique data types on 1080 Ti

The analysis shows the deserializer works the most efficiently when all its input
fields are contiguous in memory. To improve deserialization performance for
columns with various data types we make use of that fact and introduce
deserialization with tapes. Tapes are column-based and enable us to vectorize
deserialization by transposing multiple rows into a columnar format.

A separate tape for every column is created in an additional step during the
parsing process. Given a column’s length, we define a tape’s width, tapeWidth,
equal to its specified column length. The tapeLength is equal to the number of
fields it will contain, i.e. the number of rows of the input data. Consequently, a
tapeSize is the size of the tape’s buffer in memory and is equal to ��������ℎ ×

���������ℎ. For every field in FieldsIndex, the input’s field value is copied to its
column-individual tape at the following address in memory:

�����������(�����) ∶= �������(�����) + ���(�����) × ��������ℎ���(�����)

Field values that do not fully utilize their tapeWidth are right-padded with NULLs
on the tape. We illustrate this approach with an example in Figure 23.

37

Figure 23: Visual representation of deserialization tapes

We defer its evaluation with further details to Chapter 5.2.1.

For our Fast Mode, writing out the FieldsIndex to GPU memory can be skipped
and instead be temporarily written to shared memory. When a chunk’s FieldsIndex
is complete, the field values can be directly copied onto the tapes, essentially
combining two steps of the process into one. However, only having a chunk’s own
isolated FieldsIndex, the length of the chunk’s very last field is not calculable. We
work around this obstacle by saving each chunk’s first delimiter offset along the
chunk’s delimiter count during the first step of the parsing process.

Combining these two steps saves us from writing out the huge FieldsIndex and
from having to do a third pass over the input data for creating the tapes, as is still
the case for the Quoted Mode.

3.5 Streaming

We extend our approach to allow streaming. This enables us to start parsing the
input data before it is fully copied onto the GPU, i.e. reducing overall latency, and
for input data that is too big to otherwise fit into the GPU’s memory.

The input data is split into batches before being copied to the GPU’s memory for
individual and independent parsing without the need for the complete input data
to be on the GPU. We refer to an individually split part of the input data as a batch,
representing a batch of aforementioned chunks. The batches are equal in length
and of size streamingBatchSize.

38

“An orphan has no past, a widow has no future.”
- Common mnemonic in typesetting

In typesetting, widows are lines at the end of a paragraph left dangling at the top
from the previous page. Orphans are lines at the start of a paragraph left dangling
at the bottom for the next page. Both are separated from the rest of their
paragraph. Batching our input data creates a similar effect that we need to account
for. In a batch, we consider the last row an orphan, unless it is terminated by a
record delimiter, making the orphan empty. This row will not be parsed by its
batch. Instead we copy the orphan’s bytes to a temporary widowBuffer. The next
batch will prepend available data from the widowBuffer to its batch data before
starting the parsing process. Figure 24 illustrates our concept.

The widow buffer’s size is pre-defined by the streamingWidowBufferSize. We set
its default size to 10 KB. This default size is sufficient to handle rows spanning over
10,000 characters. Longer rows would end up being an orphan and not fully fit into
the widowBuffer.

Figure 24: Widows are taken from the previous batch, while orphans are left for the next batch

Since our parser kernel reads data from global memory in four byte pieces from
its chunk, its memory access needs to be aligned to a four byte memory address to
avoid a memory alignment error. A widow whose size is not a multiple of four,
would trigger such an error. We work around this issue by further padding the
batch’s data with one, two, or three NULL bytes. When parsing, these leading
NULLs are then simply ignored by the first lane of the very first chunk.

39

4. Implementation

In this chapter, we show the practical implementation of the previously discussed
approach and introduce the components of CUDAFastCSV, our C++
implementation of the presented work.

We will first give an overview of the most relevant components of our
architecture, divided into groups. Each group will start with a class diagram of its
components, containing each class’ most relevant properties and methods. We
then shortly describe each component and its function within the architecture.

In the next subchapter we will present how the components interact with each
other and give a short breakdown of the processing cost for each step presented in
the thesis approach. We end this subchapter by discussing some of the restrictions,
optimizations, and challenges we faced during our implementation.

4.1 Components

For simplicity and a better overview of this subchapter, we group the components
into six categories: Input Reading, Deserialization, Utilities, Parsing, RDMA, and
Main.

40

4.1.1 Input Reading

Figure 25: UML class diagram of input relevant components

AbstractInputReader. Since our input CSV data can originate from different
sources, including network sockets, GPU memory, hard disk on host machines, or
even from other applications, CUDAFastCSV uses an abstract base class to handle
its input. The subclasses need to at least implement size(), open(), readAll(), and
close() and may override the other methods for any unusual behavior.

BufferReader. Simple implementation that uses input data already residing in
the host’s main memory.

MemoryMappedFileReader. Using mmap() on Unix systems and
MapViewOfFile() on Windows, this class is used for reading files from the host’s
file system.

RDMAReader. An implementation of an input reader that reads the input data
from a remote machine, using RDMA, directly onto GPU memory, using the
RDMAClient class (described in the RDMA group).

41

4.1.2 Deserialization

Figure 26: UML class diagram of deserialization relevant components

AbstractColumnType. This is the base class to implement data type specific
deserialization logic as a CUDA kernel and provide requirements for the
deserialization tape. The dataSize() tells CUDAFastCSV how much bytes a
deserialized field will occupy to pre-allocate the result buffer, while tapeWidth()
returns the required tape width needed for the tape buffer. The deserializeTape()
method will be called to launch the deserialization kernel. In some cases, the tape
buffer can be used as a result, e.g. when strings do not need to be further processed
and already contain a null-terminated character by nature of the tape’s design, so
redirectTapeAsResult() can be overridden to let CUDAFastCSV skip the
deserialization and instead simply copy or use the tape buffer as the result. Using
the DECL_CSVCOLUMNTYPE(className) macro, subclasses are automatically
registered and referenced in CUDAFastCSV.

UInt*ColumnType. Deserializes unsigned integer columns. Similar to SQL’s
DDL, the specified length refers to the input’s maximum possible field length, not
the deserialized integer’s number of bytes. Fields of length 1 and 2 deserialize to
uint8_t, while 4 deserializes to uint16_t. Longer fields use uint32_t.

Float*ColumnType. Deserializes to the float data type.

CharColumnType. For strings, the column’s length is passed to the constructor.
parseStrings can be set to true to remove quotation marks.

SkipColumnType. Similar to a projection operator, a special column type that
can be used to fully ignore an irrelevant column in the input data to save parsing
and processing costs.

42

4.1.3 Utilities

Figure 27: UML class diagram of helper components used throughout CUDAFastCSV

AbstractErrorHandler. An interface to be implemented by a class to handle
errors that arise during CUDAFastCSV’s execution.

AbstractRunnable. To allow CUDAFastCSV to be used as a stand-alone
application for either parsing on the client machine or as an RDMA file server.

Options. Holds all configuration and customization for CUDAFastCSV. All
properties can be changed from the command line using parameters.

KernelOptions. A sub-class of Options that is copied to constant memory to be
used by the parser and deserialization kernels and holds additional contextual
information needed for the current batch during execution.

CLI. Implements a command line interface for CUDAFastCSV.

MemoryPool. To save latency costs from many small cudaMalloc() calls of
various and changing sizes, we allocate a large buffer on the GPU, whose memory
is then managed and reused as needed.

ExclusiveMemoryPool. Distributes dedicated MemoryPools to individual
CUDA streams.

43

ThrustMemoryPool. For device wide prefix-sum calculations and stream
compaction in our parser we use Thrust, an algorithm library shipped with the
CUDA SDK. Internally, Thrust uses memory on the GPU as a helper buffer every
time it is used. ThrustMemoryPool provides a custom allocator to Thrust that uses
our MemoryPool instead to avoid the overhead from constantly allocating and
deallocating these buffers. This would otherwise be especially punishing when
streaming, as another stream might be blocking the PCIe bus with a transfer of a
batch of input data of several hundred megabytes, causing the parsing thread to
stall. Using this custom allocator, we were able to improve overall performance by
up to 15%.

44

4.1.4 Parsing

Figure 28: UML class diagram of components relevant to parsing

ParserResult. Result object that holds the deserialized fields from the processed
batch with additional helper methods and the batch’s contextual information. The
resultsDevice property is a column-based array of pointers to global memory
holding the deserialized values that need to be cast to their underlying data type.

AbstractCSVParser. The base class for all parser implementations of
CUDAFastCSV, providing it information about data padding and memory
alignment requirements as well as the actual implementation as a kernel. exec() is
called for every batch and should synchronously return the ParserResult.

FastParser. The implementation of our proposed CSV parser in its Fast Mode.
During its initialization it allocates reusable buffers parsingBuffer, tapeBuffer,
resultBuffer, and thrustMemoryPool on the GPU to store intermediate and final
results. To avoid results from being changed by the next batch’s parsing while the
current batch is still processing its results in another thread, tapeBuffer and
resultBuffer are ExclusiveMemoryPools.

QuotedParser. A derived parser for the Quoted Mode that adds the additional
steps needed to enable our parser to consider the quotation scope when indexing
valid field delimiters.

45

4.1.5 RDMA

Figure 29: UML class diagram of RDMA specific components

For our RDMA and InfiniBand implementation we are using the Infinity library by
Claude Barthels24. It is a lightweight C++-wrapper around the ib_verbs C-API that
simplifies working with RDMA and InfiniBand.

RDMAServer. Starts a file server-like CUDAFastCSV instance that allows
remote CUDAFastCSV clients to connect to this machine and directly read input
data (property inputReader) using RDMA and InfiniBand. It automatically pins
the memory, registers it with the RDMA device, and creates a token for
communication with remote clients.

RDMAClient. A client wrapper that connects to a remote server and copies
input data directly into a GPU buffer. Memory is automatically registered and
managed when used with the RDMAReader-wrapper for reading input data.

24 Claude Barthels. Infinity. https://github.com/claudebarthels/infinity/

46

4.1.6 Main

Figure 30: UML class diagram of components that act as a facade for CUDAFastCSV

WorkStream. Represents a CUDA stream and binds a single batch to it for full
processing with additional metadata. In addition to its default Uninitialized state,
a single WorkStream, and consequently the batch and CUDA stream it represents,
can be in one of six states: Free, TransferringInput, PendingParse, Parsing,
PendingOutputTransfer, or TransferringOutput.

WorkQueue. A queue data structure holding WorkStream items that wait for
processing. Once their preceeding batch is finished in the queue, the queue’s
callback function is called with the next WorkStream item for processing.

CUDAFastCSV. The main facade of our work, putting all the components
together. It uses the provided options, parser, and inputReader to process CSV
input data with the help of three WorkQueues. The queueFree holds WorkStreams
that are free to be assigned a new batch to. When a WorkStream is finished with
transferring its batch’s input data to the GPU, it waits in queueParse for parsing.
Once finished parsing, it gets put into queueFinished for custom result processing
or transfer of the batch’s result output. When streaming is disabled, simply one
WorkStream is used to process the entire input as one batch.

47

4.2 Implementation Details

In this section, we go more in-depth on some of our implementation particulars.
We start with an overview as well as some of the specific optimizations we
underwent. Next, a detailed explanation of the streaming process using
WorkStreams and WorkQueues is given. A short time breakdown of
CUDAFastCSV’s processing stages follows. Finally, we provide a list of our
implementation limitations with their reasoning.

Our implementation provides system-specific implementations to support all
features under Linux and, with the exception of RDMA, all features under
Windows.

4.2.1 Optimizations

To further improve the performance of our parser, we optimized multiple areas of
our implementation.

In general, our parser makes use of the __forceinline__ CUDA compiler
directive, whenever possible, to guarantee the compiler inlines the function’s code,
favoring speed over space. Similarly, we annotate static for-loops with #pragma
unroll to hint to the compiler it should fully unroll the loop. To improve
throughput, we also try to avoid immediate read-after-write register dependencies
in the kernels.

Kernel Fusion Optimization

For Fast Mode our intention was to skip writing out the FieldsIndex to GPU
memory and instead write it to shared memory temporarily and essentially
combine field indexing and tape copying into one step. We realize this by storing
the chunk’s own local FieldsIndex in shared memory.

Data Type Optimizations

CSV files that are larger than 4 GB are parsed using streaming. Except for the
AbstractInputReader and its subclasses, CUDAFastCSV exclusively uses the
uint32_t data type for handling input data sizes or index positions of fields,

48

limiting it to 4 GB of input data in these situations. This limitation was a deliberate
design choice. Considering the size of the FieldsIndex and some of the data that is
stored in the parser’s buffers, using uint64_t or size_t over uint32_t would
require twice the amount of data to be read and written several times, causing not
only much longer transfer times but also reducing parallelism when stored in
shared memory.

The FieldsIndex, when stored in shared memory, is an array of type uint8_t. As
described in the Thesis Approach, when creating the FieldsIndex we first count the
delimiters in every lane in the warp and then create a prefix-sum for the warp to be
able to determine the number of preceding fields in the warp. The lane’s prefix-
sum is stored in shared memory for every warp. The prefix-sum calculation in the
warp is then done as a tree-reduction using __shfl_up_sync(). Since a warp has 32
lanes and each lane can only contain four delimiters or four quotation marks at
most during a 128 byte read, the array’s data type uint8_t is sufficient, as no warp
will exceed 255 total delimiters or quotation marks.

Tunable Buffer Sizes

When the FieldsIndex is stored in shared memory, its exact size needs to be
allocated before kernel launch, as shared memory space is limited on the SM.
Accounting for the worst case scenario of having only empty fields in a chunk of
size, e.g., 4096, we would need to reserve 16 KB of shared memory resources for
every warp. This severely limits parallelism for an edge case that might never
happen. Instead, we provide the warpIndexBufferSize parameter, which limits the
maximum number of found fields in a chunk within a warp and is used to reserve
the kernel’s shared memory space in Fast Mode or, in Quoted Mode, the required
space in global memory for the FieldsIndex. Since the default chunkSize is 2048
bytes, warpIndexBufferSize defaults to 512 field positions, i.e. 2048 bytes. Both
parameters can be tuned in accordance, improving performance based on the
underlying data characteristics of the CSV input data. Should a chunk’s field count
exceed this limitation, i.e. not all field positions can be stored in shared memory,
the application will not cause a memory violation and crash but instead gracefully
stop its current parser and emit an appropriate error message that includes a
suggestion for a new parameter value.

49

The tapeBuffer and resultBuffer of our parser implementation have a similar
field count limitation and tuning capability. Because we reset these buffers for
every batch by filling them with NULLs, their size should be small to reduce the
runtime of the cudaMemset() operation but large enough to fit all of the rows and
columns:

�������������� ∶= ���� × � ��������ℎ[���]

���������

�����

���������������� ∶= ���� × � �����������[���]. ��������

���������

�����

As such, a good estimation of the number of rows in the input data or its batch can
further increase performance. Considering our tape design and that resulting
string values occupy the same space, or in the case of short deserialized numbers
potentially occupying even more space than their raw input values, both of these
buffers are by default set to twice the input size or twice the streamingBatchSize
when streaming.

For the Fast Mode, the parser uses the parserBuffer to store the delimiter counts
for every chunk and for storing the positions of the first field of every chunk:

�ℎ������������ ∶= ���� �
���������

��������
�

������������������� ∶= 2 × (�������� × �ℎ������������ × ������(����32_�))

For the Quoted Mode, it uses the parserBuffer to store the delimiter counts and
quotation mark counts in every chunk, as well as the actual FieldsIndex:

������������������� ∶= 2 × (�������� × �ℎ������������ × ������(����32_�))

+ �������� × �ℎ������������ × �������������������

The parser’s thrustMemoryPool size is fixed to 32 KB. During our tests, Thrust’s
buffer requirements never exceeded 8 KB in our implementation. To
accommodate for any potential internal code changes of Thrust in the future, we
opted for 32 KB. Given the dimensions of our input files in comparison, tuning
this parameter is irrelevant and only yields improvements in the margin of error.
For the Quoted Mode, this buffer is fixed to 32 MB due to the additional stream
compaction step.

50

4.2.2 Data Streaming

As shortly introduced in Chapter 4.1, we implement streaming using WorkStream
items, representing a CUDA stream and a batch for processing, with the help of
three WorkQueues to queue these WorkStream items for individual processing.
Every WorkStream item has a dedicated batchBuffer in the GPU’s device memory
that is used to copy its batch’s chunks into. The size the input data is split into for
streaming is controlled by the streamingBatchSize parameter. To accommodate for
leading widow data and additional data padding, the WorkStream’s actual size of
the batchBuffer is larger than streamingBatchSize:

������� ∶= ������. �������������������

����ℎ���������� ∶= ������������������������ + �������������ℎ���� + �������

For RDMA input data, this batchBuffer is also automatically registered for
GPUDirect transfers via RDMA.

Figure 31: State diagram of a WorkStream item and the three WorkQueues

51

The states a WorkStream goes through in its lifecycle and the tasks it performs
to realize our streaming approach are visualized in a state diagram in Figure 31. At
initialization, multiple WorkStream items are created to fill the processing
pipeline. The number of created items is controlled by streamingParallelism and
defaults to four. Besides the one item being currently parsed, one item being fully
transferred and waiting for parsing, and one item’s results being transferred back
to the host, this leaves one more item to be transferred to GPU memory.

It then goes through multiple stages for every batch it gets assigned to until
there are no more batches left in the input data. To manage multiple items waiting
in the same state we use WorkQueues (first-in-first-out) in a separate host thread
that automatically call the next processing stage for the top item or, if the queue is
empty, wait for a new item to be queued for processing.

In the following, we describe each stage of the processing pipeline.

Free State. Items in the Free state are queued and waiting to be assigned a new
batch of chunks to.

Transferring Input State. In TransferringInput the appropriate input data is
copied to GPU memory. The data is then padded with NULLs to avoid additional
branches in the kernel for checking data validity when reading 128 bytes of data in
a warp, as described in the Thesis Approach chapter.

Pending Parse State. Once the item is fully transferred, it waits in PendingParse
for the previous WorkStream to finish parsing and deserializing.

Parsing State. In Parsing, the parser’s internal state is first reset. The orphan
data from the previous batch, now referred to as the widow, is prepended to the
data in the batch buffer. To avoid a memory alignment error, the data pointer is
then realigned to a four byte address with up to three additional leading bytes,
which the kernel will skip. Once the parser’s pre-conditions are checked for the
new data and the new KernelOptions copied to constant memory, the parser is
executed and the results saved to parserResults. Lastly, the orphan part of the batch
buffer is copied to the dedicated widow buffer on the GPU.

Pending Output Transfer State. The item now waits as PendingOutputTransfer
in the last queue for its results to be processed.

52

Transferring Output State. Results are either copied to the host’s main
memory or processed further on the GPU in TransferringOutput.

The batch is then considered fully processed and the WorkStream item is either
put back into the Free queue or deleted if there are no more batches left to be
assigned to WorkStream items.

4.2.3 Time Breakdown of Processing Stages

In Figure 32 we give an overview of the relative performance costs of every step of
our Fast Mode approach that we outlined the steps for in our Thesis Approach
when parsing and deserializing. We use a synthetic 1 GB CSV test data set with a
chunk size of 2048 bytes, consisting of three uint4 specified columns, each
comprised of four digits:

Figure 32: Relative performance costs of Fast Mode’s steps on V100

Reading the entire input data, while counting each chunk’s delimiters using a tree-
reduction and __shfl_down_sync() within a warp, and writing out its results to
global memory, only accounts for 15.7% of the parsing time. In comparison, time
spent on deserializing the tapes is only 24.8% but not only requires reading in the
tapes, which are collectively almost the same size as the input data read during

53

delimiter counting, but also deserialization of three uint4 fields and writing them
to global memory, which are collectively about one fourth of the input’s data size.
As expected, due to the complexity of the kernel and the amount of data involved,
the combined steps for creating the FieldsIndex and tapes accounts for the
majority of the parsing time with 58.6%. The device-wide prefix-sum calculation of
the counted delimiters per chunk is just 0.4% and the remaining 0.5% are spent on
miscellaneous data management operations, e.g. copying individual tape addresses
to global memory.

4.2.4 Limitations

In addition to the above discussed limitations, our prototype contains a number of
further limitations that we introduced due to time constraints. We document them
in the following, so that they can be addressed in a production-ready
implementation.

Escaping. For the Quoted Mode, we exploit the fact that a character is
considered quoted whenever the number of preceding quotation marks is uneven.
However, we do not take non-standard escape characters, i.e. a backslash for
escaping a quotation mark, into account.

Missing Fields. For optimization purposes, our algorithm treats record
delimiters as field delimiters. Although not standard-compliant, this relies on the
assumption that all rows contain an equal amount of columns, i.e. trailing columns
that are empty were not trimmed from the output data.

RDMA_COPY_SPLIT_SIZE. During testing we found some Mellanox kernel
drivers to throw errors when trying to copy large blocks of data with one
operation. This would happen when setting streamingBatchSize above
approximately 528 MB and then trying to read a batch from the remote RDMA
server. To circumvent this behavior, we added RDMA_COPY_SPLIT_SIZE to
RDMAClient and hardcoded its value to 500 MB. All copy requests with a size
larger than that will be automatically split into several smaller RDMA operations.

MAX_COLUMNS. To quickly look up a tape’s width inside the kernel, we use
the tapeWidth property inside the KernelOptions in constant memory. Due to time
constraints, that property is a basic static array of size MAX_COLUMNS. Dynamic

54

arrays need pointers but pointers become invalid when copied from host memory
to GPU memory, require additional management, and are not available in constant
memory. We therefore opted for this macro, defined in a global header file. By
default, its value is 32, limiting the maximum amount of columns in the input data
to 32 columns. For input data with more columns, this macro needs to be
increased accordingly. Additionally, tapeWidth’s underlying data type is uint8_t,
limiting a column’s length of type string to 255 characters.

Malformed Numbers. For optimization purposes, the deserialization of
numbers only contains a small number of validity checks. Aside from the dot
character for decimals, non-digit characters are skipped over during deserialization
and treated as zeroes that might influence the converted number if they are
between valid digits.

Negative Numbers. Deserialization to signed integer data types was skipped
due to time constraints. Similarly, the FloatColumnType ignores leading dash
characters.

Limited CUDA Copy Engines on PCIe. CUDA on desktop-grade GPUs only
has two copy engines for PCIe, one for host-to-device transfers and one for device-
to-host transfers, i.e. no two operations in the same direction can be performed in
parallel and need to be queued up. Since operations like cudaMalloc() are
synchronous by nature and cudaMemset() is internally implemented as a copy
kernel, operations like these cannot overlap with host-to-device transfers either
and need to be queued up as well. This introduced limitations of what the parser
can do on the host side while another WorkStream copies a large chunk of input
data to the device over PCIe, e.g. the above addressed ThrustMemoryPool to avoid
a thread stall during parsing. Additionally, this also limits operations non-
TransferringInput WorkStream items can do, particularly data padding and data
alignment. Any such operations are therefore moved to the TransferringInput
stage. However, NULLing the leading bytes for parsing after realigning the data
pointer requires knowing the size of the widow, which is not yet available during
the TransferringInput stage but would cause a similar thread stall if done in the
Parsing stage. As a workaround, we therefore deferred this memset() to the kernel
itself to the very first lane of the first chunk of a batch.

55

Windows-Style Line Endings. While a Unix-style line ending simply consists of
a single byte, i.e. the newline character \n, Windows-style line endings consist of
an additional preceding byte, i.e. the carriage return character \r. Since our parser
treats record delimiters equal to field delimiters using a single byte, CSV data that
uses these Windows-style line endings will cause the last field’s value to have a
trailing carriage return character for string column types. Enabling the more
expensive parseStrings option could be used to remove this trailing \r in such
situations. Number type fields will simply ignore this character during
deserialization.

Tape Width Lookup in Quoted Mode. Since our focus was primarily on
optimizing the Fast Mode, one particular optimization was left to be done when
creating the tapes from the FieldsIndex in Quoted Mode. Fields are copied by
column in this mode, i.e. lanes in a warp access columns in sequence. When
looking up the tape width for their column to copy the field to the correct offset on
the tape, each lane accesses the KernelOption’s tapeWidth property, an array of
column’s tape widths. Since the KernelOptions are located in constant memory
and every lane accesses a different address simultaneously, this causes 32 serialized
constant memory accesses instead of one. While the subsequent global memory
copy to the tape is slow in comparison to the constant memory read latency, it still
is significant enough to optimize.

Infinity’s Maximum Resource Usage. The RDMA wrapper library uses
hardcoded values for the maximum length of the two completion queues during
their initialization. Unfortunately, they cannot be changed during runtime and are
both set to 16531, which is the global maximum for completion queue lengths the
InfiniBand kernel driver allows on our testing machines. This hindered
CUDAFastCSV from working with RDMA if any other RDMA application was
already running on either machine. The fields SEND_COMPLETION_QUEUE_LENGTH and
RECV_COMPLETION_QUEUE_LENGTH are available in the
infinity::core::Configuration namespace and need to be recompiled with a
value of, e.g., 2 or be made non-const to allow CUDAFastCSV to change their
values during startup.

56

5. Evaluation

In this chapter we evaluate the performance of parsing CSV files on GPUs. First,
we describe our experiment setup. Then, we give an overview of our CPU and
GPU baselines. After that, we present and assess our measurement results. We
divide our measurements into six categories: Implementation Strategies, Tuning
Parameters, Databases and Parsers, I/O, Quoted Mode, and Hardware Scalability.
Finally, we discuss our lessons learned.

5.1 Experiment Setup

The following sections give an overview of our testing conditions and their
configuration particulars.

Hardware

We used two identical nodes for the majority of our testing, referred to as Node1
and Node2. A third node was used for NVLink related evaluations, referred to as
NodeNVLink.

Node1/2. Each system has a x86-64 based Intel Xeon Gold 5115 CPU (10 cores
with hyper-threading, 2.4 GHz base clock, 3.2 GHz turbo clock) that supports SSE
4.2 string and text instructions and is running Ubuntu 16.04 with a total of 94 GB
of DDR4-2400 memory, installed in a six-channel configuration. Each node has a
single Nvidia Tesla V100-PCIe GPU with 16 GB of HBM2 memory, that is
connected via a PCIe 3.0 bus with 16 lanes. The installed Mellanox ConnectX-4
MT27700 InfiniBand EDR network adapter is RDMA-capable with two ports and
supports 100 Gbit/s of theoretical bandwidth per port. Both nodes’ InfiniBand
adapters are interconnected via a Mellanox SB7700 switch with 100 Gbit/s EDR.

NodeNVLink. This system is an IBM AC922 (8335-GTH) with 2x IBM Power9
CPUs (each 16 cores with SMT, 2.3 GHz base clock, 3.8 GHz turbo block), running
Ubuntu 18.04 with a total of 256 GB of DDR4-2666 memory, installed in an eight-
channel configuration. The system uses an NVLink 2.0 interconnect to its 2x

57

Nvidia Tesla V100-SXM2 GPUs with 16 GB of HBM2 memory. For our tests, we
use only one NUMA node, i.e. a single GPU and CPU with 128 GB host memory.

Methodology

We measure and average all benchmarks over ten runs with the help of high-
resolution timers. For GPU-related measurements, we adhered to Nvidia’s
recommendations when benchmarking CUDA applications [30]. The time for
initialization of processes, CUDA, or memory, is not included in these
measurements. All input files are read from the Linux in-memory file system
tmpfs.

With the exception of NVLink-related measurements, we note that our
measurements are stable with a standard error of less than 5% from the mean.

Datasets

For our evaluations we use a real-world, a standardized, and a synthetic dataset.

NYC Yellow Taxi Trips. This dataset contains records of taxi trips in New York
City for the first quarter of 2019 [31]. It is provided by the City of New York. The
dataset is split into CSV files for each month. We combined the CSV files for
January, February, and March into a single CSV file that is 1.9 GB in size with 22.5
million records. Each record is made up of 18 fields, of which 14 are numerical
types, with short and consistent record lengths. Because of CUDAFastCSV’s
limitation to Unix-style line endings (\n), we replaced the Windows-style line
endings (\r\n) with Unix-style line endings. The last column,
congestion_surcharge, is empty for most records in the original dataset. Since
C/C++ does not natively support nullable primitive data types, we replaced these
empty fields with 0 in our CSV file. Additionally, since C/C++ does not have a
native data type for date-times, we deserialize the two date-time fields to ISO 8601
formatted date-time strings, e.g. “2019-01-29 16:25:38”.

TPC-H Lineitem. The H-variant of the TPC benchmark consists of a suite of
business oriented ad-hoc queries and concurrent data modifications, specified by
the Transaction Processing Performance Council [32]. The large volumes of data
populating the test database have been curated to have broad industry-wide

58

relevance. We use the suite’s generated CSV file for its LINEITEM table from the
TPC Benchmark H revision 2.18.0 with 1x scaling. The generated CSV file uses the
pipe-character instead of a comma to separate the fields. It is 719 MB in size with
over six million records. Each record is made up of 16 fields of various data types
and string fields of varying lengths. Similarly to the NYC Yellow Taxi dataset, we
deserialize the three date fields to ISO 8601 formatted date strings.

int_444. For a more controlled test environment for evaluating individual
parameters and scaling, we created a synthetic CSV test file. It consists of three
numeric fields per record, each comprised of four random digits (i.e. 0000-9999)
that need to be parsed and deserialized to a two byte unsigned integer data type
(unsigned short). Since our measurements are evaluated in GB/s, this represents a
balanced middle ground between input size and the total number of fields that
need to parsed and deserialized. The chosen length is long enough to not fit into a
compact one byte integer data type but short enough to not make optimal use of
the two byte data type, while still requiring a significant amount of deserialization
work and representing a significant output size. Unless otherwise noted, the CSV
file is 1 GB in size with 70 million records that we deserialize to approximately 400
MB of output data.

Databases and Parsers

We compare CUDAFastCSV to four CPU and two GPU baselines. These consist of
three databases, two state-of-the-art parsers for CPU and GPU, and a data
interchange format. SQL schemas of the databases can be found in the Appendix.

OmniSciDB (v5.1.2). A GPU-accelerated database that utilizes GPU processing
power to return SQL query results [33]. We bulk-load our TPC-H and NYC Yellow
Taxi datasets into temporary tables residing in main memory. Column types of the
table schemas are all marked NOT NULL and chosen as small as viable (e.g. TINYINT).
For the import, we set the quoted parameter to false to improve processing speed.
Note, however, while OmniSci is a GPU-accelerated platform, its CSV import is
entirely executed on the CPU. It utilizes all available CPU cores on the host system
for this import [34]. For measurements, we note the query processing time
reported by OmniSciDB. Before benchmarking, we import the data fully once for
warm-up. On every benchmark run, the table is truncated first.

59

PostgreSQL (v12.2). A widely popular relational database management system
[35]. We bulk-load our TPC-H and NYC Yellow Taxi datasets into main memory
residing tables. Since PostgreSQL does not support memory tables, we created an
additional PostgreSQL table space that is located in the Linux in-memory file
system tmpfs. Column types of the table schemas are all marked NOT NULL and
chosen as small as viable and supported (e.g. SMALLINT) and set to fixed lengths
when possible (e.g. CHAR(10) for dates). For measurements, we note the query
processing time reported by PostgreSQL. Before benchmarking, we import the
data fully once for warm-up. On every benchmark run, the table is truncated first.

HyPer DB (v0.5). Hyper DB is a main-memory-based relational database
management system, developed by researchers at TU Munich [36]. We bulk-load
our TPC-H and NYC Yellow Taxi datasets into tables that are in-memory by
design. Column types of the table schemas are all marked NOT NULL and chosen as
small as viable and supported (e.g. SMALLINT) and set to fixed lengths when possible
(e.g. CHAR(10) for dates). For measurements, we note the query processing time
reported by HyPer. Before benchmarking, we import the data fully once for warm-
up. On every benchmark run, the table is truncated first. Note, however, this
version of HyPer does not utilize the improved Instant Loading approach by
Mühlbauer et al. [7] as presented in the Related Work chapter of this thesis. That
implementation has since been integrated into the commercial analytics software
Tableau Server by Tableau25, which do not provide an academic license for this
particular product.

ParPaRaw. A massively parallel algorithm implementation for parsing
delimiter-separated data formats on GPUs, presented by Stehle and Jacobsen [37].
We use the binaries custom-tailored to our two datasets that were provided to us
by the authors. Measurements include the time for reading the datasets from RAM
and copying the parsed data from GPU memory to a pre-allocated and pinned
memory buffer on the host. The time taken for initializing CUDA and allocating
and pinning the host buffer is not included in these measurements. The binaries
were compiled using GCC 8.3.0 and CUDA 10.1 with -O3 optimization flags for
both. We note that the primary author of ParPaRaw ran the benchmarks on our
test system and validated our measurements.

25 Tableau. Faster analytics with Hyper. https://www.tableau.com/products/new-features/hyper

60

RAPIDS cuDF (v0.14.0). A GPU library aimed at data engineers and data
scientists to easily accelerate workflows using CUDA and the Apache Arrow [38]
columnar memory format [39]. We implemented a test program in C++ that,
using cuDF, reads the datasets from the Linux in-memory file system tmpfs, parses
and deserializes them to the Apache Arrow format, and copies results back to the
host’s main memory. For its configuration, we set the quoting parameter to
quote_style::NONE to improve processing speed. The field types are configured as
small as viable and supported (e.g. int16). For every column, the memory area of
the resulting Apache Arrow data is directly copied from GPU memory to a pre-
allocated and pinned memory buffer on the host. We use the GCC implementation
of std::chrono::high_resolution_clock to time our results. The time taken for
initializing CUDA and allocating and pinning the host buffer is not included in
these measurements. Before benchmarking, we parse and deserialize the data fully
once for warm-up. The test application was compiled using GCC 8.3.0 and CUDA
10.1 with -O3 optimization flags for both. It is worth noting that this version 0.14.0
of cuDF has a completely new and improved CSV parser for its CUDA
implementation26.

csvmonkey (v0.1). A vectorized, zero-copy CPU-based CSV parser that utilizes
SSE 4.2, written in C++ [8]. As of this writing, it leads Ewan Higg’s
microbenchmark shootout of 24 CSV parsers [40]. csvmonkey uses a single thread
for parsing and deserialization. We implemented a test program in C++ that reads
the datasets as memory mapped files from the in-memory file system tmpfs and
then parses and deserializes all fields. The fields are deserialized to data types as
small as viable and supported (e.g. unsigned short). For numeric conversions,
csvmonkey uses the Qi numeric parser implementation for double from Boost’s
Spirit library27. Accordingly, we extended their implementation to allow
deserialization to float, (u)int32, and (u)int16. An implementation for
converting numbers to one byte sized numeric data types is not provided by Qi.
Every field is directly deserialized into its appropriate address in a pre-allocated
memory buffer. We use the GCC implementation of the
std::chrono::high_resolution_clock to time our results. The time taken for

26 csv_gpu.cu https://github.com/rapidsai/cudf/commit/6d3ed596ce30135226f0bf8c5576d5b585262268
27 Boost C++ Libraries. Spirit Qi Numeric Parsers.

https://www.boost.org/doc/libs/1_73_0/libs/spirit/doc/html/spirit/qi/reference/numeric.html

61

memory mapping the input file and allocating the result buffer is not included in
these measurements. Before benchmarking, we parse and deserialize the data fully
once for warm-up. The test application was compiled using GCC 8.3.0 with -O3
-msse4.2 optimizations for aggressive inlining and copy elision of return values
(RVO), which we verified in the assembly code.

I/O

In this section, we stream the input data over various I/O sources to compare
performance against the potentially transfer bound end-to-end parsing from the
previous section, Databases and Parsers. We stream data with interconnects and
with InfiniBand using two datasets. In contrast to end-to-end parsing, results are
not copied back to the host’s main memory.

On-GPU. The input data already resides in GPU memory. This allows us to
compare raw parsing and deserialization throughput of CUDAFastCSV for the two
datasets without being transfer bound.

PCIe 3.0. The input data resides on the host’s in-memory file system tmpfs.
CUDAFastCSV streams this input data to the GPU for parsing and deserialization.
This serves as an upper bound for I/O devices on the host, including NICs and
SSDs, as they would all be limited by the interconnect’s bandwidth, even if the
devices themselves were capable of faster transfer rates. We stream the TPC-H
dataset with a streamingBatchSize of 50 MB and the NYC Yellow Taxi dataset with
a streamingBatchSize of 100 MB.

NVLink 2.0. Similar to the PCIe 3.0 setup, the input data resides in the host’s
main memory and CUDAFastCSV streams this input data to the GPU for parsing
and deserialization. In comparison to PCIe 3.0 and its practical bandwidth of just
12 GB/s, however, NVLink 2.0 can transfer with up to 63 GB/s on our
NodeNVLink system and with a latency of almost half [21]. We stream the TPC-H
dataset with a streamingBatchSize of 250 MB and the NYC Yellow Taxi dataset with
a streamingBatchSize of 300 MB.

RDMA with GPUDirect. A CUDAFastCSV instance on Node1 acts as the
RDMA file server with the input file completely loaded into pinned host memory
and registered with the InfiniBand device. The CUDAFastCSV instance on Node2

62

streams the input data directly from Node1 using RDMA and directly into the
GPU’s memory using GPUDirect. This bypasses the CPU and the host’s main
memory. We stream the TPC-H dataset with a streamingBatchSize of 75 MB and
the NYC Yellow Taxi dataset with a streamingBatchSize of 100 MB. We observed
slow but rising transmission rates on newly established InfiniBand connections.
We speculate this is due to the network connection’s initial congestion control. To
mitigate this, we run the benchmark without measurements several times first to
allow the connection between the two nodes to ramp up its transmission rate to the
network’s maximum capacity before benchmarking.

5.2 Results

In this section we show performance results divided into six categories:
Implementation Strategies, Tuning Parameters, Databases and Parsers, I/O,
Quoted Mode, and Hardware Scalability. We assess the results and explain their
cause. For better comparison of data from all sections, all measured times were
converted to their throughput value in GB/s with respect to the input’s size.

5.2.1 Implementation Strategies

In this section, we circle back to the various challenges with their proposed
solutions we presented in our Thesis Approach chapter and discuss their
evaluation. Unless otherwise noted, the input data already resides in GPU memory
and its deserialized output data is written to GPU memory.

Parallelization Strategy: Access Patterns

To analyze the viable access patterns we presented in our thesis approach and
identify chunk sizes that allow for the most optimal loading and processing, we
implemented several kernels that each load chunks at different sizes for a synthetic
1 GB CSV test dataset, consisting of eight columns, each comprised of three
characters, and present their measurements in Figure 33. To avoid compiler
optimizations, every kernel counts the number of \n-characters in its chunk.

63

Figure 33: Throughput for chunk size with various access patterns on GTX 1080 Ti

We can see that simply increasing the chunk size above 128 and processing them in
a 128 byte sized loop will provide an increase in throughput for every kernel.

single. Reads single bytes within a warp. As discussed in our Thesis Approach,
reading single bytes within a warp is a slow strategy that cannot saturate the GPU’s
memory bandwidth at any chunk size.

consecutive. The consecutive kernel accesses 128 bytes per loop within a warp,
with each thread accessing four contiguous bytes. Its maximum throughput is
comparatively low and is approached quickly. Our analysis showed this is due to
an increase in cache misses when processing warps in a thread block, causing
additional latencies.

strided. The strided kernel accesses 128 bytes per loop within a warp, with each
thread accessing four bytes in a stride of 32 bytes. Its throughput begins to decrease
early after a chunk size above 512 bytes. Because its access happens in strides, its
penalty for an increase in cache misses is lower than of the consecutive kernel.

simd_strided. Similar to the regular strided kernel, this kernel accesses 128
bytes per loop within a warp, with each thread accessing four bytes in a stride of 32
bytes. In contrast, however, the simd kernels use __vcmpeq4(), a CUDA function
similar to SSE4.2’s intrinsic instruction pcmpestri, with the four bytes as the input
and 0x0a0a0a0a as a mask (0x0a being the ASCII code for \n) to compare four

64

bytes at once. Like the regular strided kernel, its throughput begins to decrease
early due to an increase in cache misses.

simd_consecutive. Like the simd_strided kernel but instead of threads accessing
four bytes in a strided pattern, they are accessed contiguously. Unlike the
simd_strided and the regular consecutive kernel, however, it saturates the available
bandwidth and offers maximum performance. This is because the four bytes are
loaded with one memory transaction, directly by the __vcmpeq4() function. This
access pattern does not rely on the cache and simplifies the comparison operation.

consecutive_forced4b. To circumvent additional cache dependencies, like
simd_consecutive, we access the four individual bytes by forcefully loading all of the
four bytes as an int to a register first and then cast it to a char array. With this
strategy we are able to saturate the GPU’s memory bandwidth at a chunk size of
just 1024.

We conclude that simd_consecutive and consecutive_forced4b achieve the best
performance. The consecutive_forced4b kernel is our chosen strategy for
CUDAFastCSV for loading and accessing chunks. While simd_consecutive offers
similar performance, it is at the cost of more complexity, especially for a later
implementation of succeeding operations.

Deserialization Strategy: Integer Deserialization Kernels

We compare the three different approaches discussed in our Thesis Approach
(Dynamic Parallelism, Grouped Warp Lanes, Columns with Maximum Lengths)
and identify the fastest deserialization strategy. We implement these approaches as
kernels that deserialize a synthetic 1 GB CSV test data set using a pre-calculated
FieldsIndex, consisting of only one column of various sized numbers, and present
its results in Figure 34.

65

Figure 34: Comparing integer deserialization kernels on GTX 1080 Ti

As discussed in our Thesis Approach, the Dynamic Parallelism approach suffers
from a lack of resources needed to manage pending kernel launches. The grouped
approach achieves 65 GB/s but does not access the data in an optimal way and
needs either additional synchronization or atomic operations between threads to
calculate their sums. Our final approach, using columns with maximum lengths,
provides a significant improvement and, depending on the input data’s structure, a
nearly 100% branch efficiency, tested with several specified column lengths.
Column lengths that are a multiple of four provide comparable performance.
Because memory access is aligned, with a column length of ten the kernel has to
continuously account for the misaligned bytes of the field value.

We conclude that the column-based approach with specifying maximum
column lengths achieves the best performance. It is our chosen strategy for
CUDAFastCSV for deserialization.

Optimizing Deserialization: Transposing to Tapes

To improve deserialization performance for columns with various data types, we
introduced deserialization with tapes in our Thesis Approach. Using our
implemented column-based deserializer, we can now execute a type specific kernel
for each tape, i.e. each column, and deserialize its values in parallel up until the first
NULL byte or tapeWidth without the discussed performance penalty of having to

66

deserialize various data types in the input data. We illustrate this in Figure 35,
which does not take the creation of tapes into account but simply measures the raw
deserialization performance.

Figure 35: Column-based vs tape-based deserialization performance scaling on GTX 1080 Ti

5.2.2 Tuning Parameters

In this section, we evaluate several parameters for performance tuning and
scalability that we presented in our Thesis Approach chapter. Unless otherwise
noted, the input data already resides in GPU memory and its deserialized output
data is written to GPU memory.

Impact of Block Size

In CUDAFastCSV, kernels require several GPU resources, including registers and
shared memory, that are limited on the SM. Developers in CUDA specify a block
size when launching kernels that, depending on the kernel’s needs and the
underlying architecture, can help maximize usage of the device’s resources.

67

Figure 36: Impact of parameter blockSize for int_444 on V100

In Figure 36 the most optimal block sizes are shown to be between 128 and 640.

The reason for the decreased performance of block sizes smaller than 128 is
twofold. For a block size of 32 the SM’s occupancy never exceeds 50%. While the
architecture allows for up to 2048 threads per SM, the SM itself is limited to 32
thread blocks. A block size of 32 will therefore only ever occupy at most 1024
threads on the SM at all times. For the other block sizes leading up to the more
optimal ones, the deserialization kernels are not able to achieve their maximum
throughput when reading the tapes from global memory. The maximum number
of blocks per SM, 32, simply does not contain enough threads with these small
block sizes to effectively hide the memory latency for the deserialization kernels.

The sudden drop in performance when going from a block size of 640 to 672 is
due to a lower occupancy caused by a lack of available registers needed to run
multiple blocks on an SM simultaneously. In particular, the kernel in question uses
41 registers per thread, which amounts to 1312 registers per warp. CUDA allocates
registers on a per-warp basis in multiples of 256, however [41], i.e. the kernel’s
warp actually occupies 1536 instead of just 1312 registers. Given the architecture’s
limit of 65,536 registers per SM, 42 warps could theoretically fit into an SM’s
register budget. However, CUDA schedules warps in groups of four [25], i.e.
reducing the maximum number of warps to 40. A block size of 640 equals 20
warps, allowing CUDA to execute a second thread block on that SM
simultaneously, since two of such blocks equal exactly the maximum of 40 warps.
A block size of 672, however, equals 21 warps, leaving no spare register resources

68

for a second thread block. The performance of the larger block sizes then steadily
rises again, since they make better use of the available resources until the
throughput limit is hit at 960.

We conclude that, unless specified unusually low or high, blockSize does not
have a large impact on performance when changed from its default value of 128.

Impact of Chunk Size

The choice of the chunkSize in CUDAFastCSV determines how much of the input
data a warp processes. An increasing size requires more SM resources per warp but
also reduces the overhead associated with scheduling, launching, and processing
new thread blocks or warps.

Figure 37: Impact of parameter chunkSize for int_444 on V100

Figure 37 reflects what we previously discussed for access patterns in our
parallelization strategy for small chunk sizes. The steep drops, e.g. after 1792, stem
from one less concurrent thread block running on the SM due to a lack of available
shared memory resources. A slight rise in performance before every drop shows
the improved resource utilization of the available resources.

We conclude that the best chunkSize is 1024 bytes.

69

Impact of Input Size

Given a GPU’s architecture, it can only fully utilize its resources when given
enough workload. For small CSV files, we would need to use a small chunkSize to
create enough work in the form of threads that can be scheduled to read and
process input data to hide memory latencies. As previously shown, however, small
chunkSize values significantly impact processing performance negatively. So it
might not make sense to use a GPU based parser in such instances, especially when
the input data needs to be transferred to and its results back from the GPU. Even
for small input data that already resides on the GPU, there is still considerable
overhead from kernel launches and synchronization to account for.

Figure 38: Performance scaling in relation to input size for int_444 on V100

Figure 38 shows the ramp up of CUDAFastCSV’s performance when given an
increasingly large input file. While the 1 MB sized file only achieves 4.5 GB/s, the
throughput already strongly increases with a 10 MB file to 33.6 GB/s and continues
to rise until it approaches its limit of approximately 90 GB/s.

We conclude that even with just a 1 MB sized CSV file a case for loading data
using the GPU instead of the CPU could be made in certain cases, while maximum
throughput can be approached fairly quickly after just 100 MB.

70

Impact of Streaming Size

In CUDAFastCSV we can use streaming to begin parsing and deserializing of
incoming parts of the input data without having to wait for the entire input data to
be on the GPU first or for the input data to even fit into GPU memory. The input
data is partitioned into smaller sized chunks, controlled by streamingBatchSize.
Each chunk is transferred to the GPU, parsed and deserialized, and its results
transferred back to the host’s main memory. Processing and the transfer of chunks
in each direction is interleaved. As shown in the previous experiment, Impact of
Input Size, a small data size cannot utilize the GPU’s processing capabilities to its
maximum and, for streaming, results in a large amount of synchronizations over
the interconnect. However, CUDAFastCSV cannot start parsing until the first
chunk is transferred. So a too large streamingBatchSize might result in overall
worse performance, due to the additional latency from the transfer of the first
chunk of the input data and the transfer from the last chunk’s result data.

Figure 39: Impact of parameter streamingBatchSize for int_444 on V100 over PCIe 3.0

In Figure 39 we indicate PCIe 3.0 as the baseline as it represents the maximum
possible throughput in our experiment on Node1, regardless of a GPU parser’s
performance, due to its latencies and maximal throughput of approximately 12
GB/s. In our results the throughput scales almost linearly with the
streamingBatchSize up until 10 MB before it hits its maximum of 11 GB/s at 20
MB. At 500 MB, the penalties of having a too large size over the interconnect begin

71

to show. For comparison, Figure 40 shows the same experiment over NVLink 2.0
on NodeNVLink. Ramp-up speed is very similar to PCIe 3.0 but keeps rising when
the limitations of PCIe 3.0 would otherwise set in. Due to NVLink 2.0’s higher
bandwidth and lower latency, the negative impacts of a too large
streamingBatchSize already begin to show at 400 MB. In comparison to PCIe 3.0’s
peak throughput of 11.1 GB/s, with streaming over NVLink 2.0 we achieve a peak
throughput of 48.3 GB/s. Our implementation is not able to fully utilize the
interconnect’s available bandwidth due to CUDA’s copy engine limitations
described in the previous chapter, leading to transfer and processing delays from
non-overlappable operations, and due to the overhead from data and buffer
management required for streaming.

Figure 40: Impact of streamingBatchSize for int_444 on V100 over NVLink 2.0 in comparison

We conclude that PCIe 3.0’s bandwidth is saturated quickly and its best
streamingBatchSize is already achieved at 20 MB. NVLink 2.0 exposes PCIe 3.0 as a
bottleneck for end-to-end parsing in comparison.

Impact of Warp Index Buffer Size

The warpIndexBufferSize parameter in CUDAFastCSV limits the maximum
number of found fields in all chunk segments within a warp and is used to reserve
the kernel’s shared memory space in Fast Mode or, in Quoted Mode, the required
space in global memory for the FieldsIndex. It can be altered from its default, 2048

72

bytes, to increase parallelism when the underlying data characteristics of the CSV
input data allow for it. As such, less shared memory resources are allocated per
thread block, allowing for additional thread blocks to run concurrently on the SM.

Figure 41: Impact of oversized warpIndexBufferSize for int_444 on V100

Figure 41 illustrates this behavior as the amount of concurrent thread blocks steps
down whenever the increasing size allocates too many resources. For a chunk size
of 1024, the smallest viable warpIndexBufferSize for the int_444 dataset is 832.
Maximum throughput of around 90.9 GB/s is kept up until 1536. The default of
2048 falls into the 85.6 GB/s range. To accommodate for a worst-case scenario of
only having empty fields in a 1024 byte chunk in any part of our int_444 data, we
would need a warpIndexBufferSize of 4096, which reduces our performance to 68.6
GB/s. Larger sizes reduce performance even further.

We conclude that the warpIndexBufferSize shows to have a large impact on
performance, as it is dependent on the underlying structure of the input data.

5.2.3 Databases and Parsers

To evaluate end-to-end parsing performance of CUDAFastCSV, we benchmarked
our approach against several implementations from different categories as
described in our experiment setup. We use the TPC-H and NYC Yellow Taxi
dataset, residing in the host’s main memory, and measure the time until all
deserialized fields are available in the host’s main memory in an accessible and
either row- or column-oriented data storage format. Since CUDAFastCSV is a

73

GPU-based implementation that heavily relies on the performance of the system’s
interconnect in this scenario, we include measurements not only over PCIe 3.0
(Node1) but also over NVLink 2.0 (NodeNVLink).

NYC Yellow Taxi

Figure 42: End-to-end performance comparison for NYC Yellow Taxi dataset

The performance numbers reported for parsing and deserializing the 1.9 GB from
the NYC Yellow Taxi dataset in Figure 42 highlight the strength of CUDAFastCSV,
which is only limited by the PCIe 3.0’s available bandwidth. This is especially
noteworthy, as deserializing includes nine floating point numbers and five integers
out of the 18 total fields.

The GPU-based implementation, cuDF with its new and updated CSV
implementation, still achieves just a quarter of the performance of CUDAFastCSV.
All CPU-based approaches, i.e. PostgreSQL, HyPer DB, OmniSciDB, and
csvmonkey, are slower by up to three orders of magnitude. CUDAFastCSV over
NVLink 2.0 more than triples the performance over its PCIe 3.0 variant and is
approaching I/O performance of DDR4 main memory [17].

Only ParPaRaw provides comparable performance to CUDAFastCSV. To
determine if ParPaRaw is being limited by the interconnect in this instance, we

74

additionally measured its on-GPU throughput for this dataset and compared it to
our implementation in Figure 43. ParPaRaw achieves 16.2 GB/s on-GPU
throughput on our system. In comparison, our Quoted Mode measures 25.9 GB/s
and our Fast Mode even 60 GB/s. Using our early context detection approach, we
are able to reduce the overall amount of work, as we do not need to track multiple
DFAs, and are less processing-intensive as a result.

Figure 43: Comparing on-GPU throughput of ParPaRaw to CUDAFastCSV

TPC-H Lineitem

Figure 44: End-to-end performance comparison for TPC-H’s lineitem dataset

75

For the 719 MB TPC-H dataset, Figure 44 shows CUDAFastCSV to be slightly
slower when compared to the NYC Yellow Taxi dataset on both, PCIe 3.0 and
NVLink 2.0. The bottlenecking factor for this dataset is found in the transfer of the
larger result data back to the host, causing increasingly longer delays between
streamed chunks. For every 100 MB chunk of TPC-H data transferred to the GPU,
approximately 118 MB of result data needs to be transferred back to the host, while
the NYC Yellow Taxi data only needs 93 MB per 100 MB. This causes delays in
input streaming and during processing, as kernel invocations get hindered by data
dependencies and synchronization. In the taxi dataset, when the last chunk is fully
deserialized it has no pending output from preceding chunks waiting in the device-
to-host pipeline. In comparison, the last chunk of the TPC-H dataset still has
multiple preceding chunks waiting in the pipeline for their transfer.

RAPIDS cuDF, another GPU-based implementation, shows a similar drop in
performance of approximately 10%. In contrast, some of the CPU-based
implementations were able to significantly improve their performance for the
TPC-H dataset, namely HyPer and csvmonkey, due to the smaller number of
numeric fields that need to be deserialized.

Again, CUDAFastCSV over NVLink 2.0 can more than triple its performance in
comparison to the PCIe 3.0 variant.

Unfortunately, for this dataset we were not able to get a ParPaRaw binary in
time.

5.2.4 I/O

We present results for CUDAFastCSV with various interconnects and an RDMA
with GPUDirect approach with our two datasets. In contrast to the previous
section’s setup, results are not copied back to the host’s main memory but instead
stored in GPU memory to avoid unrelated bottlenecks in the host’s interconnect.
These results are in a column-oriented data storage format and accessible for
potential further processing on the GPU.

76

NYC Yellow Taxi

Figure 45: Interconnect streaming performance comparison for NYC Yellow Taxi dataset

The throughput for parsing and deserializing the NYC Yellow Taxi dataset when it
is already in GPU memory is at 60 GB/s and serves as a baseline, representing the
maximum possible performance an interconnect to the GPU could potentially
achieve. As seen in the previous section, our implementation over PCIe 3.0 can
fully saturate the bus with 11.2 GB/s. Again, throughput over NVLink 2.0 more
than triples and shows the limitations of the PCIe 3.0 system in comparison. Our
RDMA with GPUDirect approach, streaming the input data from a remote
machine directly onto GPU memory over the internal PCIe 3.0 bus, shows 9.4
GB/s. Although InfiniBand’s maximum throughput is 12 GB/s on our system, we
observe the same overhead from GPUDirect RDMA as previous experiments [42].

77

TPC-H Lineitem

Figure 46: Interconnect streaming performance comparison for TPC-H’s lineitem data

As with the NYC Yellow Taxi dataset, the baseline for the TPC-H dataset is
established by measuring the throughput of the data when it is already in GPU
memory. The measured 48.5 GB/s represent the maximum possible performance
an interconnect to the GPU could potentially achieve. Similarly to the taxi dataset,
PCIe 3.0 is saturated at 11.0 GB/s and NVLink 2.0 performance is almost triple in
comparison. For the RDMA with GPUDirect approach we achieve similar
performance at 9.2 GB/s for the TPC-H dataset. Overall, throughput for this
dataset is slightly lower for the baseline and for every interconnect, due to the
increased size of the result data and its consequences as described in the previous
section.

5.2.5 Quoted Mode

In our thesis approach, we introduced the Quoted Mode as an alternative parsing
mode that keeps track of quotation marks to create a context-aware FieldsIndex,
using early context detection. As the main focus of our work was the default Fast

78

Mode, however, we want to include an illustration of the additional processing
costs involved and show a comparison between the two modes for our three
datasets in Figure 47.

Figure 47: Comparison of Fast Mode and Quoted Mode on V100

For all three datasets, throughput is roughly cut in half. Writing out the large
FieldsIndex to GPU memory and subsequent stream compaction is especially
punishing in the NYC Yellow Taxi dataset with many more potential fields per MB
than the TPC-H or the int_444 dataset. Nevertheless, performance numbers are
promising and since our main focus was the Fast Mode, there is much more
optimization left to be done for the Quoted Mode.

5.2.6 Hardware Scalability

To compare desktop-grade GPUs with server-grade GPUs and the generational
leap in hardware advancements and how both could further fare in regards to
scalability in the future, we include measurements on a desktop-grade Pascal GPU
from the preceding generation. The GPU is a Nvidia GTX 1080 Ti (GP102) with 11
GB of GDDR5X memory and a theoretical bandwidth of 450 GB/s. It has 28 SMs,
each with 128 CUDA cores, totaling 3584 cores with a maximum clock of 1999
MHz. For comparison, Node1’s GPU is the succeeding Volta generation, a server-

79

grade Nvidia Tesla V100 with 16 GB of HBM2 memory and a theoretical
bandwidth of 835 GB/s. It has 80 SMs, each with 64 CUDA cores, totaling 5120
cores with a maximum clock of 1380 MHz. While not accounting for any
performance improvement from IPC or architectural advancements in Volta and
its cores, the combined clock of all cores is slightly higher on the Pascal GPU at
hand. Volta’s memory bandwidth, however, is significantly higher.

Figure 48: Performance improvement going from desktop-Pascal to server-Volta

The performance improvements shown for Volta in Figure 48 are at least 100%
over Pascal for our three datasets. As expected, our analysis showed a considerable
chunk of the performance improvement stems from the higher memory
bandwidth and its efficiency. Further analysis we conducted showed the
enhancements in instruction throughput and latency account for the other
significant improvement in performance [22].

80

5.3 Discussion

In this section, we discuss the lessons we learned in our evaluation.

GPUs improve parsing performance. Our measurements show that parsing on
the GPU improves throughput by 134x for the NYC Yellow Taxi dataset and 73x
for the TPC-H Lineitem dataset, when compared to the fastest CPU parser. Thus,
offloading parsing to the GPU can provide significant value for databases.

Parallelizing context-awareness of quoted data. We show that, using our early
context detection approach, we are able to parallelize context-awareness in Quoted
Mode and with 51 GB/s scale performance to rates necessary for fast interconnects.

Interconnect bandwidth limits performance. In all our measurements, PCIe
3.0 does not provide sufficient bandwidth to achieve peak throughput. Using
NVLink 2.0 instead, the throughput increases by 2.8-3.4x. This improvement shifts
the bottleneck to our pipelining strategy. Removing this limitation would increase
throughput further by 1.6x.

Network streaming is feasible. We show that streaming data from the network
to the GPU is possible and provides comparable performance to loading data from
the host’s main memory over PCIe 3.0. This strategy provides an interesting
building block for data streaming frameworks.

GPUs can efficiently handle complex data format features. Features, such as
quoting fields, decrease parsing throughput to 43-55% of the non-quoted
throughput. However, this reduced throughput is still higher than the bandwidth
provided by PCIe 3.0 and InfiniBand. Thus, the overall impact is no loss in
performance. Only for faster interconnects would performance tuning have a
practical impact.

Desktop-grade GPUs provide good performance per cost. For all our datasets,
a desktop-grade GPU is sufficient to saturate the PCIe 3.0 interconnect. In contrast
to a server-grade Nvidia Tesla V100 costing 7000 EUR in 2020, a desktop-grade
Nvidia GTX 1080 Ti is only 10% of the cost at 700 EUR. Thus, only for NVLink 2.0
and files that are complex to parse does a server-grade GPU make sense.

81

6. Related Work

Our work is built upon concepts researched in other areas. In this chapter we
present an overview of the related research areas that are relevant to the approach
of this thesis.

Loading

As modern in-memory DBMSs can process millions of transactions per second
[43], the question of how to actually get the data into the system first, to ultimately
make use of this performance, becomes increasingly important.

CPU-Limited. Dziedzic et al. [3] evaluated CSV data loading performance of
multiple modern and popular DBMSs (database management system) along several
dimensions to understand various software and hardware limitations for such
workloads. With a variety of hardware configurations and datasets, they provide an
extensive analysis. They show that modern DBMSs are unable to saturate I/O
bandwidth. Their evaluation shows that data loading is mostly CPU bound.

We implement an end-to-end parsing approach to offload these CPU bound
workloads to the GPU and thereby saturate I/O bandwidth, leaving the host
system’s interconnect as the new bottleneck.

RDMA-Enabled. Fent at al. [28] show experimentally, that for modern high-
performance systems, networking has become a performance bottleneck. They
propose a high-performance communication layer for DBMSs that redesigns how
data flows in and out of these systems. Among other things, it is based on RDMA
for intra-datacenter communication. Their results show that with the help of
InfiniBand RDMA, network bottlenecks for DBMSs can largely be eliminated.

Given their results, we utilize InfiniBand RDMA and GPUDirect as a data
loading technique for GPU-based CSV parsing to avoid such network bottlenecks.

82

Vectorization

Mühlbauer et al. [7] already analyzed the problems of CPU-based CSV parsing and
deserialization. Modern CPUs try to predict the outcome of if-then conditional
branches for their pipelined architecture. When parsing CSV input, based on
character-at-a-time comparisons, these branches can hardly be predicted. They
observed that, amongst other things, the CPU pipeline needs to be flushed often
due to constant branch miss penalties from mispredictions when doing so. This
behavior can not only be observed during parsing but also during deserialization.
By utilizing SSE 4.2 SIMD instructions for delimiter identification during parsing
and deserialization, they reduced the number of control flow branches to avoid
these pipeline flushes.

We adapt SSE 4.2 string specific SIMD instructions to GPU warp-level
primitives and CUDA’s Math API SIMD intrinsics. We analyze their viability for
CSV parsing and compare their performance to alternative solutions on the GPU.

Parallelization

An inherent challenge of parsing the CSV data format in parallel is its sequential
text stream of data, separated by delimiters to represent rows and columns, and
quoting without losing the correct context of found delimiter characters.

Instant Loading. Mühlbauer et al. [7] present an approach to parallelize CSV
parsing by splitting the data into equally sized chunks. To identify the ideal chunk
size, they concluded a high dependency on the CPU’s L3 cache size and number of
hardware threads. Their approach for Instant Loading allows scalable bulk loading
of CSV data at wire speeds on just a single node. We classify their approach as early
context detection. However, when context-awareness is needed, their approach
requires a serialized pass over the input data for context detection, which is
inefficient.

We adapt chunking as a parallelization strategy for our approach and analyze its
most efficient memory access patterns in regards to threads and multi-level caches
on the GPU. In contrast to their serialized approach on context-awareness, we also
parallelize early context detection.

83

ParPaRaw. In ParPaRaw [37], a massively parallel algorithm for parsing
delimiter-separated data formats on GPUs is presented. When using
aforementioned chunking to parallelize parsing on, the parsing thread is not aware
of the actual parsing context of its chunk. A record or value delimiter might be an
actual delimiter or just plain text because of enclosing characters (e.g. double-
quotes) or escape characters that are in a preceding chunk. ParPaRaw’s main focus
was to create a solution that takes the chunk’s parsing context into account without
the need for any initial sequential pass over the data or the need to wait for all
preceding threads to finish first, allowing for true massive scalability. For this, they
exploit the fact that there are only a few possible contexts to consider while
parsing. A DFA (deterministic finite automaton) keeps track of the thread’s current
context while reading characters. However, instead of just one DFA, each thread
instantiates one DFA for every possible starting state (a similar concept can be
observed in work done by Ge et al. [44] and by Döhmen et al. [45]). While reading
delimiters, these DFAs will then transition accordingly until the thread reaches the
end of the chunk where the DFAs’ final state will then be saved to a vector. The
composite of these vectors allow the algorithm to deduce the correct starting state
of every thread which then can correctly interpret its chunk’s symbols in a
subsequent step. We classify their approach as late context detection.

Inferring the chunks’ parsing contexts requires additional memory for each
DFA and global synchronization between thread blocks. Although late context
detection scales to many threads, tracking multiple DFAs incurs more work overall.
As we reduce the amount of work, ParPaRaw is more processing-intensive than
our approach. While their model shows that it can saturate PCIe 3.0’s bandwidth
on some inputs, due to the DFA simulations our evaluation shows it cannot
saturate the bandwidth of faster interconnects, such as NVLink 2.0. The
performance of data loaded from I/O devices, such as NICs, is also not considered
in ParPaRaw. With the rise in bandwidth saturation using GPU parsing, shown for
CUDAFastCSV and ParPaRaw, loading the data becomes increasingly important
to not become the new bottleneck.

84

Other Data Formats

Current research on how to improve parsing performance is not limited to the
CSV data format.

Langdale and Lemire [46] implemented a CPU-based state-of-the-art JSON
parser, simdjson, in their research that makes heavy use of SIMD instructions.

With Mison, Li et al. [47] deviate from the traditional approach of parsing JSON
using finite state machines. Instead, projection and filter operators are integrated
into the parser itself, which uses previously seen patterns in the dataset to
speculatively predict logical locations of queried fields.

Xie et al. introduce FishStore [48], a storage layer that combines a generic data
parser with a hash-based primary subset index and a user-defined function to
dynamically register a subset of the parsed data. They find this subset hashing to be
a powerful primitive that supports a broad range of analytical queries on data that
becomes immediately available during parsing.

85

7. Conclusion

In this chapter, we conclude our work with a summary of the methods and results
of our thesis. We follow up by giving an overview of potential future work.

7.1 Summary

This thesis has shown the feasibility and potential of loading CSV data using the
GPU for either in-memory data processing or for offloading this CPU-bound task
using end-to-end streaming to either a GPU in the host system or to a GPU in a
remote network host using RDMA and GPUDirect.

We analyzed different implementation strategies for parsing CSV data in
parallel on GPUs and introduced early context detection. We adapted chunking
from CPU-based related work. We compared memory access patterns for their
efficiency. We implemented several deserialization models and, using tapes,
presented a solution to efficiently deserialize CSV fields in parallel.

In this thesis we introduced CUDAFastCSV, our implementation for a GPU-
based CSV parser. With its ability for end-to-end parsing, we demonstrated an
approach for CSV loading over the GPU to saturate I/O bandwidth and hide
latency from data transfers. CUDAFastCSV’s implementation to efficiently load
data onto the GPU from network devices using RDMA and GPUDirect was also
presented.

We evaluated multiple CSV implementations on the CPU and GPU and
compared different ways and interconnects for how to load CSV data onto the
GPU. We underlined the need for faster interconnects with performance numbers
of on-GPU parsing of up to 100 GB/s. We showed how parameters of
CUDAFastCSV can impact performance and demonstrated its scalability in
regards to input size, while still being a viable alternative for files as small as 1 MB.

86

7.2 Future Work

In addition to the limitations shown in chapter 4.2.4 that should be addressed in
potential future work, we discuss perspectives to improve our approach.

Multi-GPU. Systems with multiple GPUs and CPUs are becoming more
common. In a system with multiple GPUs, each GPU could be used to parse and
deserialize streamed batches during end-to-end parsing. This is especially useful on
NVLink 2.0 systems with multiple links, as a PCIe 3.0 system is already
bottlenecking the process with just a single GPU. While performance would not
proportionally scale with additional GPUs because of the dependency on the
widow from the preceding batch, we still expect a significant increase in
performance.

Out-of-Order Parser Scheduling. A major performance bottleneck in end-to-
end parsing are operations that were scheduled in another stream and block the
bus. For instance, transferring large results from device to host can block more
important copy operations in the parsing stream needed for further processing,
ultimately decreasing performance. CUDA-calls are scheduled on a first-in-first-
out basis, regardless of the issuing stream. Adding a Heap- or Priority Queue-like
data structure that can hold CUDA-operations before they are actually passed on
to the CUDA runtime, could allow for parsing related operations to be executed
sooner and improve overall performance.

Quoted Mode. Since our focus for this work was mainly on the Fast Mode, most
of our optimization efforts went into it as well. The Quoted Mode still has lots of
room for performance improvement. Additionally, support for detecting escape
characters would allow for parsing even complex text-filled CSV files. A versatile
first approach would be to check for an immediate escape character before
counting an encountered quotation mark as such.

Filtering. Support for custom filtering during loading would not only decrease
the amount of unnecessarily large data transfers but also improve overall
performance. Given the architecture in our work, filtering could be added during
the deserialization step to determine if the field, and consequently the entire row,
should be written to the result buffer.

87

Hiding Pipeline Latency. One of the most punishing effects in end-to-end
parsing is the delay of the initial chunk of data that is transferred to the GPU. The
actual parsing does not start until the first chunk is fully transferred, so keeping the
streamingBatchSize small will reduce this latency. However, small batch sizes do
not fully utilize the GPU resources, reducing overall performance. An alternative
would be to start with a small batch size to reduce the initial latency and then
automatically ramp-up the batch size to streamingBatchSize for the subsequent
batches.

Automatic Parameter Adjustments. In the current implementation, the user
has to specify the tapeWidths in the form of column lengths, indicating a column’s
maximum field length. Alternatively, CUDAFastCSV could keep track of the
currently longest field for each column during the Indexing Fields step.
Additionally, the importance of an optimal warpIndexBufferSize for performance
was shown. However, when over-optimistically choosing a too small value for a
given dataset, the current implementation cannot execute and will instead
gracefully exit with a warning and suggestion for an alternative value. The simple
option to automatically restart the parser with the now known smallest possible
value for warpIndexBufferSize, can improve the user experience tremendously.

Unicode. Due to time constraints, our implementation focused on simply
supporting ASCII encoded content. However, by 2009, UTF-8 has already
established itself as the main encoding on the web and as of 2020 is used by over
95% of websites, underlining its importance and need for support in
CUDAFastCSV [49] [50].

88

Appendix

Source Code and Software

The source code of the software of this thesis, CUDAFastCSV, is available on
GitHub: https://github.com/alxkum/CUDAFastCSV

SQL Schemas

OmniSci:
CREATE TEMPORARY TABLE omnisci_taxi(

 VendorID TINYINT NOT NULL,

 tpep_pickup_datetime CHAR(19) NOT NULL,

 tpep_dropoff_datetime CHAR(19) NOT NULL,

 passenger_count TINYINT NOT NULL,

 trip_distance FLOAT NOT NULL,

 RatecodeID TINYINT NOT NULL,

 store_and_fwd_flag CHAR(1) NOT NULL,

 PULocationID SMALLINT NOT NULL,

 DOLocationID SMALLINT NOT NULL,

 payment_type CHAR(1) NOT NULL,

 fare_amount FLOAT NOT NULL,

 extra FLOAT NOT NULL,

 mta_tax FLOAT NOT NULL,

 tip_amount FLOAT NOT NULL,

 tolls_amount FLOAT NOT NULL,

 improvement_surcharge FLOAT NOT NULL,

 total_amount FLOAT NOT NULL,

 congestion_surcharge FLOAT NOT NULL

);

CREATE TEMPORARY TABLE omnisci_tpch_lineitem(

 orderkey INT NOT NULL,

 partkey INT NOT NULL,

 suppkey INT NOT NULL,

 linenumber TINYINT NOT NULL,

 quantity TINYINT NOT NULL,

 extendedprice FLOAT NOT NULL,

 discount FLOAT NOT NULL,

 tax FLOAT NOT NULL,

 returnflag TEXT NOT NULL ENCODING DICT(8),

 linestatus TEXT NOT NULL ENCODING DICT(8),

89

 shipdate TEXT NOT NULL,

 commitdate TEXT NOT NULL,

 receiptdate TEXT NOT NULL,

 shipinstruct TEXT NOT NULL,

 shipmode TEXT NOT NULL,

 comment TEXT NOT NULL

);

PostgreSQL:
CREATE TABLE postgresql_taxi(

 VendorID SMALLINT NOT NULL,

 tpep_pickup_datetime CHAR(19) NOT NULL,

 tpep_dropoff_datetime CHAR(19) NOT NULL,

 passenger_count SMALLINT NOT NULL,

 trip_distance FLOAT NOT NULL,

 RatecodeID SMALLINT NOT NULL,

 store_and_fwd_flag CHAR(1) NOT NULL,

 PULocationID SMALLINT NOT NULL,

 DOLocationID SMALLINT NOT NULL,

 payment_type CHAR(1) NOT NULL,

 fare_amount FLOAT NOT NULL,

 extra FLOAT NOT NULL,

 mta_tax FLOAT NOT NULL,

 tip_amount FLOAT NOT NULL,

 tolls_amount FLOAT NOT NULL,

 improvement_surcharge FLOAT NOT NULL,

 total_amount FLOAT NOT NULL,

 congestion_surcharge FLOAT NOT NULL

) TABLESPACE alxkumbenchmarkspace;

CREATE TABLE postgresql_tpch_lineitem(

 orderkey INT NOT NULL,

 partkey INT NOT NULL,

 suppkey INT NOT NULL,

 linenumber SMALLINT NOT NULL,

 quantity SMALLINT NOT NULL,

 extendedprice FLOAT NOT NULL,

 discount FLOAT NOT NULL,

 tax FLOAT NOT NULL,

 returnflag CHAR(1) NOT NULL,

 linestatus CHAR(1) NOT NULL,

 shipdate CHAR(10) NOT NULL,

 commitdate CHAR(10) NOT NULL,

 receiptdate CHAR(10) NOT NULL,

 shipinstruct TEXT NOT NULL,

90

 shipmode TEXT NOT NULL,

 comment TEXT NOT NULL

) TABLESPACE alxkumbenchmarkspace;

HyPer DB:
CREATE TABLE hyper_taxi(

 VendorID SMALLINT NOT NULL,

 tpep_pickup_datetime CHAR(19) NOT NULL,

 tpep_dropoff_datetime CHAR(19) NOT NULL,

 passenger_count SMALLINT NOT NULL,

 trip_distance FLOAT NOT NULL,

 RatecodeID SMALLINT NOT NULL,

 store_and_fwd_flag CHAR(1) NOT NULL,

 PULocationID SMALLINT NOT NULL,

 DOLocationID SMALLINT NOT NULL,

 payment_type CHAR(1) NOT NULL,

 fare_amount FLOAT NOT NULL,

 extra FLOAT NOT NULL,

 mta_tax FLOAT NOT NULL,

 tip_amount FLOAT NOT NULL,

 tolls_amount FLOAT NOT NULL,

 improvement_surcharge FLOAT NOT NULL,

 total_amount FLOAT NOT NULL,

 congestion_surcharge FLOAT NOT NULL

);

CREATE TABLE hyper_tpch_lineitem(

 orderkey INT NOT NULL,

 partkey INT NOT NULL,

 suppkey INT NOT NULL,

 linenumber SMALLINT NOT NULL,

 quantity SMALLINT NOT NULL,

 extendedprice FLOAT NOT NULL,

 discount FLOAT NOT NULL,

 tax FLOAT NOT NULL,

 returnflag CHAR(1) NOT NULL,

 linestatus CHAR(1) NOT NULL,

 shipdate CHAR(10) NOT NULL,

 commitdate CHAR(10) NOT NULL,

 receiptdate CHAR(10) NOT NULL,

 shipinstruct TEXT NOT NULL,

 shipmode TEXT NOT NULL,

 comment TEXT NOT NULL

);

91

List of Figures

Figure 1: Typical view of a CSV file ... 5

Figure 2: Main memory prices between 1975 and 2020. .. 7

Figure 3: CUDA execution model and its thread organization ... 10

Figure 4: CUDA memory hierarchy model .. 13

Figure 5: Salient features of device memory (V100) ... 13

Figure 6: Performance comparison of memory types (V100) .. 16

Figure 7: Ideal case, aligned and coalesced access. Addresses required for the 128 bytes
requested fall within four sectors. Bus utilization is 100% with no loads wasted. 17

Figure 8: Coalesced but misaligned access. Warp requests 32 consecutive 4 byte elements
but not from a 128 byte aligned address. The addresses fall within at most five sectors but
six sectors are loaded. Bus utilization is 66.67%. ... 18

Figure 9: All threads in warp request same 4 byte data. The addresses fall within one
sector but two sectors are loaded. Bus utilization is merely 6.25%. 18

Figure 10: Worst-case scenario. 4 byte loads are scattered across 32 addresses in global
memory. .. 18

Figure 11: Mapping physical bytes to shared memory bank indexes 19

Figure 12: Optimal parallel access pattern. No bank conflicts, every thread accesses a
different bank. Maximum bandwidth utilization. ... 20

Figure 13: Irregular access pattern. No bank conflicts, because every thread still accesses a
different bank. Maximum bandwidth utilization. ... 20

Figure 14: Irregular access pattern. Several bank conflicts with mutliple threads accessing
the same bank. Conflict-free broadcast access only possible if threads access the same
address within the bank. Poor bandwidth utilization. .. 21

Figure 15: Example of using three CUDA streams to evenly distribute work 21

Figure 16: Conceptual overview of our approach .. 26

Figure 17: Splitting input into equally sized, independent, chunks 28

Figure 18: Computing the field offset for every chunk using a prefix sum 30

Figure 19: Using the chunk’s prefix sum to infer number of preceding delimiters 31

Figure 20: Additional pass in Quoted Mode to remove invalid delimiters 32

Figure 21: Thread reading aligned bytes to register for looped deserialization 35

Figure 22: Column-based deserialization performance scaling for unique data types on
1080 Ti ... 36

Figure 23: Visual representation of deserialization tapes ... 37

Figure 24: Widows are taken from the previous batch, while orphans are left for the next
batch .. 38

92

Figure 25: UML class diagram of input relevant components... 40

Figure 26: UML class diagram of deserialization relevant components 41

Figure 27: UML class diagram of helper components used throughout CUDAFastCSV .. 42

Figure 28: UML class diagram of components relevant to parsing 44

Figure 29: UML class diagram of RDMA specific components .. 45

Figure 30: UML class diagram of components that act as a facade for CUDAFastCSV 46

Figure 31: State diagram of a WorkStream item and the three WorkQueues 50

Figure 32: Relative performance costs of Fast Mode’s steps on V100 52

Figure 33: Throughput for chunk size with various access patterns on GTX 1080 Ti 63

Figure 34: Comparing integer deserialization kernels on GTX 1080 Ti............................... 65

Figure 35: Column-based vs tape-based deserialization performance scaling on GTX 1080
Ti .. 66

Figure 36: Impact of parameter blockSize for int_444 on V100 .. 67

Figure 37: Impact of parameter chunkSize for int_444 on V100 ... 68

Figure 38: Performance scaling in relation to input size for int_444 on V100 69

Figure 39: Impact of parameter streamingBatchSize for int_444 on V100 over PCIe 3.0 .. 70

Figure 40: Impact of streamingBatchSize for int_444 on V100 over NVLink 2.0 in
comparison ... 71

Figure 41: Impact of oversized warpIndexBufferSize for int_444 on V100 72

Figure 42: End-to-end performance comparison for NYC Yellow Taxi dataset 73

Figure 43: Comparing on-GPU throughput of ParPaRaw to CUDAFastCSV 74

Figure 44: End-to-end performance comparison for TPC-H’s lineitem dataset 74

Figure 45: Interconnect streaming performance comparison for NYC Yellow Taxi dataset
 ... 76

Figure 46: Interconnect streaming performance comparison for TPC-H’s lineitem data . 77

Figure 47: Comparison of Fast Mode and Quoted Mode on V100 78

Figure 48: Performance improvement going from desktop-Pascal to server-Volta 79

Figures 3, 4, and 15 derived from illustrations done by Cheng et al. [51].

93

Bibliography

[1] W3C, "CSV on the Web: A Primer," 25 February 2016. [Online]. Available:
https://www.w3.org/TR/2016/NOTE-tabular-data-primer-20160225/. [Accessed 11 May 2019].

[2] S. Idreos, I. Alagiannis, R. Johnson and A. Ailamaki, "Here are my Data Files. Here are my Queries.
Where are my Results?," CIDR, pp. 57-68, 2011.

[3] A. Dziedzic, M. Karpathiotakis and A. Ailamaki, "DBMS Data Loading: An Analysis on Modern
Hardware," in ADMS/IMDM@VLDB, New Delhi, India, 2016.

[4] "Apache Parquet," [Online]. Available: https://parquet.apache.org. [Accessed 16 June 2019].

[5] R. Kitchin and G. McArdle, "What makes Big Data, Big Data?," Big Data & Society, pp. 1-10, 2016.

[6] M. Hilbert, "The World's Technological Capacity to Store, Communicate, and Compute Information,"
Science (AAAS), vol. 332, pp. 60-67, 2011.

[7] T. Mühlbauer, W. Rödiger, R. Seilbeck, A. Reiser, A. Kemper and T. Neumann, "Instant Loading for
Main Memory Databases," Proceedings of the VLDB Endowment, vol. 6, no. 14, pp. 1702-1713, 2013.

[8] D. Wilson, "csvmonkey: Header-only vectorized, lazy-decoding, zero-copy CSV file parser," [Online].
Available: https://github.com/dw/csvmonkey. [Accessed 1 June 2020].

[9] "Nvidia Developer Zone: CUDA C Programming Guide," 26 March 2019. [Online]. Available:
https://docs.nvidia.com/cuda/pdf/CUDA_C_Programming_Guide.pdf. [Accessed 29 April 2019].

[10] "Brytlyt: GPU based PostgreSQL Database," [Online]. Available: https://www.brytlyt.com. [Accessed 16
May 2019].

[11] "SQream DB: GPU-accelerated data warehouse," [Online]. Available: https://sqream.com/product/.
[Accessed 16 May 2019].

[12] Y. Shafranovich, "RFC 4180," October 2005. [Online]. Available: https://tools.ietf.org/pdf/rfc4180.pdf.
[Accessed 29 March 2019].

[13] I. Corporation, IBM FORTRAN Program Products for OS and the CMS Component of VM/370
General Information, New York, NY, USA, 1972.

[14] R. Jadrnicek, "Software Reviews - SuperCalc²," InfoWorld, vol. 5, no. 37, pp. 38-40, 1983.

[15] G. J. van den Burg, A. Nazabal and C. Sutton, "Wrangling Messy CSV Files by Detecting Row and Type
Patterns," 2018.

[16] J. Mitlöhner, S. Neumaier, J. Umbrich and A. Polleres, "Characteristics of Open Data CSV Files," in
International Conference on Open and Big Data (OBD), 2016.

[17] U. Drepper, "What Every Programmer Should Know About Memory," 2007.

94

[18] S. Manegold and P. Boncz, "Optimizing Main-Memory Join on Modern Hardware," IEEE Transactions
on Knowledge and Data Engineering, vol. 14, no. 4, pp. 709-731, 2002.

[19] A. Trivedi, P. Stuedi and J. Pfefferle, "Albis: High-Performance File Format for Big Data Systems," in
USENIX Annual Technical Conference, Boston, MA, USA, 2018.

[20] P. Boncz and S. Manegold, "Database Architecture Optimized for the New Bottleneck: Memory
Access," Proceedings of the VLDB Endowment, vol. 99, pp. 54-65, 1999.

[21] C. Lutz, S. Breß, S. Zeuch, T. Rabl and V. Markl, "Pump Up the Volume: Processing Large Data on
GPUs with Fast Interconnects," in SIGMOD, Portland, OR, USA, 2020.

[22] N. Corp., "Nvidia Tesla V100 GPU Architecture (Whitepaper)," 2017.

[23] N. Corp., "Nvidia Tesla P100 GPU Architecture (Whitepaper)," 2016.

[24] E. Z. Zhang, Y. Jiang, Z. Guo and X. Shen, "Streamlining GPU Applications on the Fly - Thread
Divergence Elimination through Runtime Thread-Data Remapping," in ICS, Tsukuba, Ibaraki, Japan,
2010.

[25] Z. Jia, M. Maggioni, B. Staiger and D. P. Scarpezza, "Dissecting the Nvidia Volta GPU Architecture via
Microbenchmarking," in GPU Technology Conference, San Jose, CA, USA, 2018.

[26] A. Dragojevic, D. Narayanan, O. Hodson and M. Castro, "FaRM: Fast Remote Memory," in USENIX
Symposium on Networked Systems Design and Implementation, Seattle, WA, USA, 2014.

[27] A. Kalia, M. Kaminsky and D. Andersen, "Design Guidelines for High Performance RDMA Systems,"
in USENIX Annual Technical Conference, Denver, CO, USA, 2016.

[28] P. Fent, A. van Renen, A. Kipf, V. Leis, T. Neumann and A. Kemper, "Low-Latency Communication
for Fast DBMS Using RDMA and Shared Memory," in IEEE International Conference on Data
Engineering, Dallax, TX, USA, 2020.

[29] D. B. Kirk and W.-m. W. Hwu, Programming Massively Parallel Processors: A Hands-on Approach,
Cambridge, MA, USA: Morgan Kaufmann Publications, Elsevier, 2013.

[30] N. Corp., B. Fiser and S. Jodlowski, "Best Practices When Benchmarking CUDA Applications," in GTC
- GPU Tech Conference, San Jose, CA, USA, 2019.

[31] N. T. &. L. Commision, "TLC Trip Record Data," 2019. [Online]. Available:
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page. [Accessed 26 March 2020].

[32] T. P. P. Council, "TPC-H is a Decision Support Benchmark," [Online]. Available:
http://www.tpc.org/tpch/. [Accessed 26 March 2020].

[33] O. Inc., "OmniSci - Accelerated Analytics Platform," [Online]. Available: https://www.omnisci.com/.
[Accessed 1 June 2020].

[34] O. Inc., "OmniSci Docs: Loading Data with SQL - CSV/TSV Import," [Online]. Available:
https://docs.omnisci.com/loading-and-exporting-data/command-line/load-data#csv-tsv-import.
[Accessed 1 June 2020].

95

[35] T. P. G. D. Group, "PostgreSQL: The world's most advanced open source database," [Online].
Available: https://www.postgresql.org/.

[36] L. D. Technische Universität München, "HyPer," [Online]. Available: https://hyper-db.de. [Accessed 16
May 2019].

[37] E. Stehle and H.-A. Jacobsen, "ParPaRaw: Massively Parallel Parsing of Delimiter-Separated Raw Data,"
CoRR, vol. abs/1905.13415, 2019.

[38] "Apache Arrow," [Online]. Available: https://arrow.apache.org/. [Accessed 1 June 2020].

[39] RAPIDS, "cuDF," [Online]. Available: https://rapids.ai/. [Accessed 1 June 2020].

[40] E. Higgs, "CSV Game - Benchmark game for reading CSV files," [Online]. Available:
https://bitbucket.org/ewanhiggs/csv-game/src/master/. [Accessed 1 June 2020].

[41] D. Lee, I. Dinov, B. Dong, B. Gutman, I. Yanovsky and A. W. Toga, "CUDA Optimization Strategies
for Compute- and Memory-Bound Neuroimaging Algorithms," Computer Methods and Programs in
Biomedicine, vol. 106, no. 3, pp. 175-187, 2012.

[42] L. J. Toso, "Efficient Join Operators on Heterogeneous Systems Using RDMA and Coprocessors,"
Technische Universität Berlin, 2019.

[43] S. Tu, W. Zheng, E. Kohler, B. Liskov and S. Madden, "Speedy Transactions in Multicore In-Memory
Databases," in SOSP, Farmington, PA, USA, 2013.

[44] C. Ge, Y. Li, E. Eilebrecht, B. Chandramouli and D. Kossmann, "Speculative Distributed CSV Data
Parsing for Big Data Analytics," in SIGMOD, Amsterdam, Netherlands, 2019.

[45] T. Döhmen, H. Mühleisen and P. Boncz, "Multi-Hypothesis CSV Parsing," in SSDBM, Chicago, IL,
USA, 2017.

[46] G. Langdale and D. Lemire, "Parsing Gigabytes of JSON per Second," 2019.

[47] Y. Li, N. R. Katsipoulakis, B. Chandramouli, J. Goldstein and D. Kossmann, "Mison: A Fast JSON
Parser for Data Analytics," Proceedings of the VLDB Endowment, vol. 10, no. 10, pp. 1118-1129, 2017.

[48] B. Chandramouli, D. Xie, Y. Li and D. Kossmann, "FishStore: Fast Ingestion and Indexing of Raw
Data," Proceedings of the VLDB Endowment, vol. 12, no. 12, pp. 1922-1925, 2019.

[49] M. Davis, "Official Google Blog," [Online]. Available:
https://googleblog.blogspot.com/2012/02/unicode-over-60-percent-of-web.html. [Accessed 23 July
2020].

[50] W. -. W. T. Surveys, "Usage of character encodings broken down by ranking," [Online]. Available:
https://w3techs.com/technologies/cross/character_encoding/ranking. [Accessed 23 July 2020].

[51] J. Cheng, M. Grossman and T. McKercher, Professional CUDA C Programming, John Wiley & Sons,
2014.

[52] "Nvidia Developer Zone: CUDA C Best Practices Guide," 26 March 2019. [Online]. Available:

96

https://docs.nvidia.com/cuda/pdf/CUDA_C_Best_Practices_Guide.pdf. [Accessed 29 April 2019].

[53] P. Fent, A. van Renen, A. Kipf, V. Leis, T. Neumann and A. Kemper, "Low-Latency Communication
for Fast DBMS Using RDMA and Shared Memory," in ICDE, 2020.

