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Abstract 

CSV is a widely-used format for data exchange. Due to its prevalence, virtually all 
industrial-strength database systems and stream processing frameworks support 
loading data from CSV input. 

However, loading CSV data efficiently is challenging. Modern I/O devices such 
as InfiniBand NICs and NVMe SSDs are capable of sustaining high transfer rates. 
Fast interconnects, such as NVLink, provide the GPU high bandwidth to data in 
main memory. At the same time, the semi-structured and text-based layout of CSV 
is non-trivial to parse in parallel. 

We propose to speed-up loading CSV input using GPUs. We devise a new 
approach to parallelize parsing that can correctly handle CSV features that are 
often neglected, in particular quotes. To efficiently load data onto the GPU from 
network devices, we extend our approach with RDMA and GPUDirect. Our 
evaluation shows that we are able to load real-world data sets at up to 60 GB/s, 
thereby saturating high-bandwidth I/O devices.  

Zusammenfassung 

CSV ist ein weitverbreitetes Format für den Datenaustausch. Auf Grund dieser 
Verbreitung, unterstützen praktisch alle Hochleistungsdatenbanksysteme und 
Stream Processing Frameworks das Laden von CSV-Daten. 

Dennoch ist das effiziente Parsen von CSV-Daten herausfordernd. Moderne 
I/O-Geräte, wie InfiniBand-Netzwerkkarten und NVMe-SSDs, sind in der Lage 
hohe Transferraten zu liefern. Schnelle Interconnects, wie z.B. NVLink, bieten der 
GPU zu den Daten im Arbeitsspeicher eine hohe Bandbreite. Zugleich ist aber das 
semi-strukturierte und textbasierte Layout von CSV schwer parallel zu parsen. 

Wir beschleunigen das Laden von CSV mit Hilfe von GPUs. Wir entwerfen 
einen neuen Ansatz zum Parsen, der oft vernachlässigte Eigenschaften von CSV, 
insbesondere Anführungszeichen, korrekt verarbeitet. Um Daten effizient aus dem 
Netzwerk zu laden, erweitern wir unseren Ansatz mit RDMA und GPUDirect. 
Unsere Evaluation zeigt, dass wir in der Lage sind echte Datensätze mit bis zu 60 
GB/s zu laden und damit die Bandbreite von schnellen I/O-Geräten ausschöpfen.  



 

 

  



 

Acknowledgments 

First and foremost, I would like to thank Clemens Lutz for advising me on my 
thesis. His deep knowledge on GPUs, related research, and adjacent topics 
throughout this thesis proved to be a valuable resource for information and 
insight. He helped, inspired, and lead me. Thank you for all the time you have 
taken out of your schedule to meet with me every week and for being an excellent 
advisor. 

Further, I would like to thank the primary author of ParPaRaw, Elias Stehle, for 
not only providing their implementation but also taking the time to help make it 
run with my evaluation data on the test machine. 

  



 

 



 

Table of Contents 

1. Introduction 1 

2. Background 4 

2.1 CSV ........................................................................................................................... 4 

2.2 In-Memory Database Systems & Data Processing ............................................. 6 

2.3 GPGPU .................................................................................................................... 7 

2.4 CUDA ...................................................................................................................... 9 

2.5 InfiniBand with RDMA & GPUDirect .............................................................. 24 

3. Thesis Approach 26 

3.1 Parallelization Strategy ......................................................................................... 28 

3.2 Indexing Fields ...................................................................................................... 30 

3.3 Deserialization ...................................................................................................... 33 

3.4 Optimizing Deserialization: Transposing to Tapes .......................................... 35 

3.5 Streaming ............................................................................................................... 37 

4. Implementation 39 

4.1 Components .......................................................................................................... 39 

4.2 Implementation Details ....................................................................................... 47 

5. Evaluation 56 

5.1 Experiment Setup ................................................................................................. 56 

5.2 Results .................................................................................................................... 62 

5.3 Discussion .............................................................................................................. 80 

6. Related Work 81 

7. Conclusion 85 

7.1 Summary ................................................................................................................ 85 

7.2 Future Work .......................................................................................................... 86 

 



 

 



1 

1. Introduction 

Sharing data requires the source provider and the user of that data to agree on a 
common file format for exchanging data. CSV (comma-separated values) is a file 
format [1] for tabular data exchange that is widely supported by consumer, 
business, and scientific applications. It is a plain text file with lines representing 
rows and commas separating column values. As such, it trades performance and 
size for simplicity [2] [3]. More efficient file formats exist (e.g. Apache Parquet 
[4]), but they lack universal compatibility and are usually specific to their domain 
or platform. With Big Data and ever-growing data sizes in data processing, 
transferring and parsing CSV data increasingly becomes the bottleneck. To deal 
with this large or complex data gained more interest in the field of Big Data as well 
[5]. Most of these online data sets grow rapidly because they are constantly and 
increasingly gathered by cheap and various sensors, such as IoT devices, mobile 
devices, software logs, cameras, microphones, or RFID readers, and often stored as 
CSV [6]. The amount of online data has roughly doubled every 40 months since 
the 1980s, with currently over 2.5 exabytes of new data generated every day [6]. 

Motivation 

Over the past decade, hardware evolved significantly. Previously, data processing 
or moving data was the bottleneck due to insufficient I/O performance. Thus, 
parsing data on the CPU was the overall fastest method. However, with new 
technologies like GPUs, NVLink 2.0, RDMA (remote direct memory access), and 
GPUDirect RDMA, moving data to the GPU is more efficient and not the 
bottleneck anymore. Additionally, these new technologies provide new 
opportunities for data parsing. 

CSV parsing has traditionally been done on the CPU, with more advanced 
applications utilizing SIMD instructions [7] [8]. As processing is done in parallel 
on each of the cores, speeding up parsing further can only be achieved by scaling 
up CPU cores. For their highly parallel processing capabilities with tremendous 
computational power in comparison to CPUs [9], GPUs can already be used to 
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speed up data processing [10] [11]. Additionally, network interfaces can be scaled 
up to achieve a higher bandwidth than the CPU’s interconnect, e.g. PCIe 3.0, can 
provide for reading the CSV data. 

In contrast to CPUs, however, GPUs are specialized for throughput instead of 
latency. GPUs achieve high throughput by massively parallelizing computations. 
However, CSV’s data format is challenging to parse in parallel. Finding line breaks 
to parallelize by rows requires iterating over the entire data first. 

Contributions 

Previous work on GPUs does not consider end-to-end parsing from I/O devices. In 
addition, previous approaches do not parallelize context-awareness but use 
resource-intensive late context detection instead. These do not scale to rates 
necessary for fast interconnects. 

In this work we investigate strategies for parsing and deserializing CSV data in 
parallel on GPUs. We propose a new early context detection approach, that 
explores a new trade-off to gain efficiency. Our key insight is that the maximum 
row length has a known upper bound in practice. This insight enables us to 
parallelize chunking from the CPU-based approach by Mühlbauer et al. [7]. We 
analyze the most efficient memory access patterns in regards to threads and multi-
level caches on the GPU. We adapt SSE 4.2 string specific SIMD instructions to 
GPU-based variants or alternatives and analyze their performance and viability for 
CSV parsing on GPUs. We implement an end-to-end parsing approach to offload 
CPU-bound CSV loading to the GPU and thereby saturate I/O bandwidth. The 
need for faster interconnects is underlined with performance of on-GPU parsing. 
We also present an implementation to efficiently load data onto the GPU from 
network devices using RDMA and GPUDirect. We show that even for small sized 
CSV files, loading data using the GPU can be reasonable. Overall, our 
contributions are: 

 We propose a new approach to parallelize CSV parsing on GPUs. 

 We analyze how to make the most efficient use of the CUDA platform 
and the GPU’s architecture for CSV parsing. 
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 We show how to efficiently load data onto the GPU for end-to-end 
parsing. 

 We evaluate cases in which it makes sense to offload parsing to the GPU. 

Outline 

Here, we provide an overview of the content and describe the structure of this 
thesis. In the next Chapter 2, we discuss the background. We give an overview of 
CSV characteristics and in-memory databases. Then we describe how GPUs are 
used for highly parallel processing in general and with CUDA specifically. In 
Chapter 3, we introduce our theoretical approach for parsing CSV data efficiently 
on GPUs using CUDA. The subsequent Chapter 4 shows the practical 
implementation and introduces its components. Next, in Chapter 5 we show 
comparisons and performance evaluations of some of our implementation 
strategies as well as comparable CPU- and GPU-based CSV parser 
implementations. In Chapter 6 we then present an overview of related research 
areas and its related work. Finally, in the last Chapter 7, we conclude and present 
possibilities for future work. 
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2. Background 

In this chapter we give an overview of technologies and concepts significant to 
understanding this thesis. We will first describe the CSV file format. Then, we 
outline in-memory databases and their growth in popularity. We follow this up by 
introducing GPUs for their highly parallel processing capabilities. An in-depth 
overview of CUDA and its relevant details of the Volta architecture follows. 
Finally, we show high-speed NICs with the ability to directly manipulate remote 
memory. 

2.1 CSV 

CSV (comma-separated values) is a common file format [1] for tabular data 
exchange that is widely supported by consumer, business, and scientific 
applications and commonly used by databases for importing and exporting data. It 
is a lightweight, plain-text data format that often fulfills the requirement of being 
the least common denominator of information exchange. 

According to the standard RFC 4180 [12], the CSV format can be recursively 
defined as follows: 

File = [Header CRLF] Record *(CRLF Record) [CRLF] 

Header = Name *(Comma Name) 

Name = Field 

Record = Field *(Comma Field) 

Field = (Quoted | Unquoted) 

Unquoted = *Char 

Quoted = DoubleQuote *(Char | "" | Comma | CR | LF) DoubleQuote 

Char = Any character, except ", CR, LF, and , 

Comma = , 

DoubleQuote = " 

An example of typical CSV data is shown in Figure 1. A CSV file can contain an 
optional header that maps field names to the corresponding columns of the 
records. Lines separated by CRLF (\r\n) represent records (rows), and commas 
separate fields (columns). Each field is either quoted or unquoted. A field that 
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contains quotation marks ("), commas, or newline characters must be enclosed 
quoted in double quotes. Furthermore, an embedded quotation mark must be 
escaped by preceding it with another quotation mark. Whitespace characters are 
not ignored and treated as part of the field value, i.e. putting a space after the 
comma separating the fields, as is common in the English language, would result in 
a leading space character for the succeeding field. 

 
Figure 1: Typical view of a CSV file 

While the RFC 4180 is widely considered to be the main reference for CSV 
parsing, it is not an official specification, as the CSV format itself, despite its 
popularity, has never been officially standardized. This is most likely due to the fact 
that CSV was already first used in 1972 [13] and became popular by 1983 [14] but 
no standardization attempts were made until the RFC 4180 in 2005. 

It should be noted that some variations of the CSV format exist. These use other 
delimiters for separating fields (e.g. tabs, pipes, or semi-colons instead of commas) 
or use another character to escape embedded quotes (e.g. backslash). It is also 
common for Linux-based software to export its CSV data with a simple LF (\n) 
instead of CRLF (\r\n). 

Massive amounts of data from a wide range of sources and applications is made 
available this way. The Common Log Format1 and Extended Log Format2 are 
standardized text formats in CSV that are used by web servers to generate log files 
(e.g. for every file accessed by clients during page visits) as well as many other 
applications that use CSV, or a variation thereof, for logging. In 2018, van den 
Burg et al. [15] estimated that GitHub.com alone contains over 19 million CSV 

                                                 
1 W3C. Logging Control in W3C httpd. https://www.w3.org/Daemon/User/Config/Logging.html 
2 W3C. Extended Log File Format. https://www.w3.org/TR/WD-logfile.html 
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files. Open government data repositories make their datasets increasingly more 
available in the CSV format [16], some in excess of hundreds of gigabytes in size3 4. 

Advantages of the CSV format include their portability and simplicity but at the 
sacrifice of performance and file size [2]. More efficient formats exist (e.g. Apache 
Parquet [4]) but they lack universal compatibility and are usually specific to their 
problem domains or platforms. 

In regards to correctly parsing CSV data, we consider a parser context-aware if it 
can correctly determine whether an encountered comma is an actual field delimiter 
or a character of a quoted string field. We classify late context detection as 
determining the context only during parsing and early context detection as having 
the context already discovered before parsing begins. 

2.2 In-Memory Database Systems & Data Processing 

To analyze or mine Big Data, its growth results in an increasing interest in data 
processing, especially OLAP (online analytical data processing), and a need for 
high-performance data loading and processing. However, in traditional databases 
the hard disk has been the bottleneck [17]. Meanwhile, decreasing prices of 
memory chips allowed server systems to be equipped with multiple terabytes of 
main memory. By the end of 2008, main memory cost fell under $10,000 USD per 
terabyte for the first time, as shown in Figure 2. 

With these decreasing prices, in-memory databases became commercially 
viable, e.g. MonetDB5. In contrast to traditional disk-based database management 
systems, in-memory database management systems take advantage of the higher 
bandwidth and lower latency of main memory to increase query performance [18]. 

                                                 
3 Kaggle. https://www.kaggle.com/datasets?filetype=csv 
4 NYC OpenData. https://data.cityofnewyork.us/browse?limitTo=datasets 
5 MonetDB. https://www.monetdb.org/ 
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Figure 2: Main memory prices between 1975 and 2020. 

OLAP-type workloads typically involve complex analytical queries over the 
entire data set. For this reason, column-oriented (in-memory) database systems 
succeeded in their effectiveness and this led to the development of a series of 
columnar data formats, e.g. Apache Parquet6, ORC7, Arrow8 [19]. 

Aside from main memory, the CPU is the new bottleneck in these systems [20]. 
Recent hardware developments, discussed in the next sections, have presented an 
opportunity to further improve these CPU bottlenecks. 

2.3 GPGPU 

Computations, including CSV parsing, have traditionally been done on the CPU, 
with more advanced applications even utilizing SIMD instructions. With the 
advance of GPGPU (general-purpose computing on graphics processing units) for 
its highly parallel processing capabilities with tremendous computational power in 

                                                 
6 Apache Parquet. https://parquet.apache.org/ 
7 Apache ORC. https://orc.apache.org/ 
8 Apache Arrow. https://arrow.apache.org/ 
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comparison to CPUs9, more and more data processing is being done on GPUs [21].  
They are specialized for compute-intensive and highly parallel computations with 
transistors being devoted to data processing rather than data caching or flow 
control as is the case for CPUs [9]. Entire database systems are running on GPUs 
(e.g. Brytlyt10, SQream DB11), and GPUs are used to speed up traditional and in-
memory databases by offloading some of their data processing onto GPUs. 

Modern GPUs are composed of multiple SMs (Streaming Multiprocessor), of 
which each has dozens of dedicated cores and several types and layers of cache. 
They are designed to be executed with the SIMT (Single Instruction, Multiple 
Threads) model. On Nvidia GPUs, this is typically done in groups of 32 threads, 
collectively referred to as warps. 

Additionally, in comparison to the host machine’s main memory, modern 
GPUs’ dedicated memory (VRAM) allows for far higher throughput of data 
between processor and memory. Modern high-bandwidth memory technologies, 
like HBM2, currently deliver up to 900 GB/s of peak memory bandwidth [22], 
while modern DDR4 main memory can only provide a theoretical bandwidth of up 
to 25 GB/s per channel12. 

However, a major downside is that the VRAM’s capacity on GPUs is rather 
limited in comparison to main memory on host machines. Current high-end GPUs 
at most only provide 32 GB of memory13. As this is typically too small to store the 
data of an in-memory database system, the relevant data needs to be transferred 
from host memory to GPU memory for processing and, optionally, the results 
copied back to host memory again. This is done over a comparatively slow 
interconnect between the CPU and GPU. 

The most common interconnect today is PCIe v3.0, providing a theoretical 
maximum bandwidth of 15.8 GB/s14. In practice, however, throughput is typically 
only around 12 GB/s [21]. A limited amount of GPUs already released with PCIe 

                                                 
9 “Theoretical GFLOP/s Intel CPUs vs. Nvidia GPUs” https://docs.nvidia.com/cuda/cuda-c-

programming-guide/graphics/floating-point-operations-per-second.png 
10 “Brytlyt: GPU based PostgreSQL Database” https://www.brytlyt.com 
11 “SQream DB: GPU-accelerated data warehouse” https://sqream.com/product/ 
12 JEDEC Standard. DDR4 SDRAM. JESD79-4B. 
13 Nvidia V100. https://www.nvidia.com/en-us/data-center/v100/ 
14 PCI-SIG. PCI Express Base Specification Revision 3.0, 2010. 



9 

v4.0 and a theoretical maximum bandwidth of 31.5 GB/s15. With Nvidia’s protocol 
NVLink 2.0 and its own interconnect NVHS (Nvidia High-Speed Signaling 
Interconnect) an aggregated maximum bandwidth of 160 GB/s over four links is 
supported [23]. 

2.4 CUDA 

CUDA is Nvidia’s proprietary framework for their GPGPU pipeline and high-
performance computing. In contrast to prior APIs like DirectX or OpenGL, CUDA 
provides an API with a focus on parallel programming. It gives developers a 
software layer that provides direct access to the GPU’s virtual instruction set and 
compute elements to execute GPU functions (referred to as compute kernels) with 
an abstract view of the underlying architecture. In contrast to regular parallel 
programming, CUDA exposes architectural features, such as memory hierarchies 
and execution models, directly to the programmer. This enables finer control for 
better optimization of heterogeneous massively parallel programming tasks. The 
CUDA platform is accessible through CUDA-accelerated libraries, compiler 
directives, APIs, and extensions to industry-standard programming languages, 
including C/C++, Fortran, and Python. 

The following sections will mostly focus on providing insight into CUDA 
running on the Volta architecture (V100 accelerator on GV100 GPU). To some 
extent, previous architectures (e.g. Pascal on GP100) may differ in their 
implementation. 

2.4.1 Thread Abstraction and Organization 

A CUDA program consists of a combination of the host code that runs on the CPU 
and device code that runs on the GPU. When a kernel is launched on the host side, 
its device code’s statements are executed by the threads on the GPU. Threads 
within a warp execute the same statement simultaneously. CUDA exposes a two-
level thread hierarchy abstraction, decomposed into grids of blocks and blocks of 
threads, illustrated in Figure 3. 

                                                 
15 PCI-SIG. PCI Express Base Specification Revision 4.0, 2017. 
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Figure 3: CUDA execution model and its thread organization 

CUDA implements the BSP (bulk synchronous parallel) model for its thread 
architecture and requires structured parallelism workloads with much more tasks 
than available hardware cores on the SMs to scale and run efficiently. This allows 
CUDA to hide latencies caused by instructions and memory operations, as further 
discussed in the subsequent sections. 

The threads that are launched by a kernel are collectively called a grid. All 
threads belonging to the same block can cooperate with each other by 
synchronizing or using the SM’s shared memory space. The grids and blocks 
represent a logical view of the thread hierarchy of the kernel. Because their 
dimensionality affects performance, this abstraction allows to further optimize and 
even efficiently execute the same application code on various devices with different 
compute and memory resources. 

While from a logical point of view it appears threads are executed concurrently, 
from a hardware point of view not all threads can physically execute at the same 
time. When a grid of blocks is launched (i.e. a kernel launch), the blocks are 
distributed among SMs, partitioned further into warps, and scheduled for 
execution. The number of warps per block can be calculated as follows: 
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Thus, the hardware always allocates a discrete number of warps for a thread block. 
Conceptually, this is the granularity of work processed simultaneously by an SM in 
SIMD fashion. If threadsPerBlock is not a multiple of 32, threads in the last warp 
are left inactive. It is therefore important to optimize workloads to fit within these 
boundaries to maximize utilization of the SM’s compute resources. 

When a warp stalls (e.g. when waiting on a memory operation to complete), the 
SM will switch to another eligible warp for execution to hide the latency that would 
have been otherwise introduced from the stalling warp. Ideally, the occupancy of 
SMs’ cores should be kept close to 100% with enough warps to keep the device 
occupied: 

��������� ∶= 100 ×
�����������

������������
 

2.4.2 Warp Divergence 

CPUs try to keep back pressure in their instruction pipeline for maximum 
hardware utilization. When encountering flow-control constructs, however, 
branching occurs and the pipeline can no longer be filled with upcoming 
instructions since it is not yet clear which path the application’s control flow will 
take. Modern CPUs include complex hardware to try to predict the outcome of 
these conditional branches for their pipelined architecture (i.e. branch prediction). 
GPUs, however, are comparatively simple devices without complex branch 
prediction mechanisms. All threads in the warp must execute the same instruction 
in the cycle. This exposes a significant performance degrading problem when 
threads in the same warp take different paths (i.e. warp divergence). If threads in a 
warp diverge, the warp will serially execute each branched path while disabling 
threads that do not partake in that branch. Code like if(cond){…}else{…} would 
essentially cut the performance in half whenever at least one thread evaluates cond 
differently than the other 31 threads. With more conditional branches, the loss of 
parallelism would be even greater. To obtain the best performance, different 
execution paths within the same warp should be avoided. This keeps the branch 
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efficiency close to 100%, which is defined as the ratio between non-divergent 
branches and total branches: 

�����ℎ���������� ∶= 100 × �
����������ℎ�� − ��������������ℎ��

����������ℎ��
� 

Algorithms often need to be redesigned to achieve this. However, even simple 
techniques like loop unrolling or rearranging data access patterns can reduce or 
avoid warp divergence. More complex techniques, like thread-data remapping 
[24], exist as well. 

2.4.3 Memory Hierarchy 

Data-intensive workloads are bottlenecked by how fast they can read and write 
data. Thus, having higher bandwidth and lower latency memory would speed up 
the workload’s performance. However, equipping hardware with a large amount of 
such memory is not always technologically feasible or economically viable. In that 
case, the memory architecture needs to achieve optimal latency and bandwidth 
with the underlying memory hardware, including hard disks or flash drives, main 
memory, caches, and registers. 

When moving closer to the processor, the memory in the memory hierarchy 
becomes progressively faster but also smaller in capacity. For data that is actively 
being used by the processor, it is kept in that low-latency part of the memory 
hierarchy. For later use of that data, it is stored in the high-latency/high-capacity 
part of the memory hierarchy. CPUs and GPUs use similar models in their 
memory hierarchy design with GPUs allowing for finer control of their behavior. 
The L1 and L2 caches are examples of non-programmable memory in the CPU 
memory hierarchy. In contrast, CUDA’s model allows many types of memory to be 
explicitly programmed. CUDA’s memory model unifies the host’s and the device’s 
memory hardware but still exposes the full memory hierarchy to allow optimizing 
for highest performance and lowest latency with maximum capacity. We provide 
an illustration of CUDA’s memory hierarchy model in Figure 4. 
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Figure 4: CUDA memory hierarchy model 

Each has a different scope, lifetime, and caching behavior. While threads have their 
own private local memory (registers and spilled register data in global memory), 
blocks have their own shared memory space that is visible to all threads belonging 
to that block throughout its lifetime. The principal traits of various memory types 
are shown in the following table: 

Memory Location Cached Access Scope Lifetime 

Register on chip - R+W Thread Thread 

Local VRAM L1 R+W Thread Thread 

Shared L1 - R+W Block Block 

Global VRAM L2 (L1 opt.) R+W All + host Application 

Constant VRAM Yes R All + host Application 

Texture VRAM L1 R All + host Application 
Figure 5: Salient features of device memory (V100) 
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Registers. This is the fastest memory space on a GPU. Variables declared in a 
kernel are generally stored in a 32-bit register. Dynamically allocated arrays are 
always directly spilled to local memory. While register variables may be shared 
across threads in a warp using Warp Shuffle Functions16, its contents are otherwise 
private to their respective thread and can no longer be accessed once a warp is 
finished with the kernel. Given the large number of threads that may run on an 
SM, its registers are a rather scarce resource (65,536 per SM on V100) and limited 
to 255 per thread. Should a thread exceed its limit or a block exceed the SM’s 
resources, registers will be spilled into the much slower local memory. Conversely, 
threads with few registers used allow for more blocks to reside on the SM, which 
can increase occupancy and improve performance. 

Local Memory. Variables from a kernel that were not eligible for or did not fit 
into the register space will spill into this memory space. Contrary to its name, it is 
merely reserved space in the VRAM and as such it is subject to the same high 
latencies and low bandwidths as global memory. In contrast to global memory, 
however, it is per default cached in the L1 cache. 

Shared Memory. Variables declared __shared__ in a kernel are stored on the 
same physical location as the L1 cache. It shares its lifetime with its thread block. 
Similar to the CPU L1 cache, it has a much higher bandwidth and much lower 
latency than global memory but is also programmable. Its main purpose is inter-
thread communication using synchronized data access (e.g. using 
__syncthreads() or __syncwarp()) or as a software-managed cache. On Volta, up 
to 96 KB can be configured for use as shared memory per SM, limited by the 128 
KB unified cache. When a thread block is finished with the kernel, its allocation of 
shared memory is released for new thread blocks to use. 

Global Memory. This is the largest memory space on a GPU (either 16 or 32 GB 
on V100) with the highest latency and lowest bandwidth. It can be accessed from 
any kernel and from any SM at any time throughout the application's lifetime. It is 
usually allocated and managed by the host with address pointers passed to kernels 
as parameters. Data can be copied from and to the host’s main memory in a similar 
fashion to memcpy(), using cudaMemcpy() or cudaMemcpyAsync() on the host. If the 

                                                 
16 Nvidia. CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html#warp-shuffle-functions 
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host’s memory is not pinned, CUDA will first allocate pinned memory on the host 
as a temporary staging area to transfer the data into before copying it to or from 
the device to avoid unsafe data access in case the operating system needs to 
physically move that memory page during a transfer. When reading or writing to 
global memory from a kernel, optimizing memory transactions are vital for 
obtaining maximum performance (see next section). For better performance, data 
from global memory is cached in L2 per default. Data that is read-only for the 
entire lifetime of a kernel can also be cached in L1 using __ldg() or hinted to the 
compiler with const and __restrict__ variable modifiers, if the compiler hasn’t 
already detected the read-only behavior through static code analysis. Addresses for 
memory operations need to be aligned, i.e. a thread accessing a data type of n bytes 
requires its address in global memory to be a multiple of n. 

Constant Memory. Global variables declared __constant__ are stored in the 
VRAM but cached in a dedicated 2 KB read-only constant cache on the SM, similar 
to L1 [25]. It is a latency optimized read-only memory space for threads within a 
warp accessing the same address simultaneously, e.g. when accessing a coefficient 
for a mathematical formula. Concurrently reading data from different addresses 
within a warp results in a severe performance penalty. Data in constant memory 
must be initialized by the host before kernel launch. 

Texture Memory. A memory space optimized for 2D spatial locality with 
support for hardware filtering and interpolation. It is not relevant to this work and 
we include it here solely for the sake of completeness. 

L2 Cache. A fast, global, 6 MB sized cache for all SMs on Volta. It caches global 
memory reads and writes with a cache line size of 128 bytes, divided into four 32 
byte sectors. It is worth noting that contrary to Nvidia’s Volta documentation [22], 
some sectors might be empty in the cache line. A cache miss in one of these sectors 
will not cause a load of the entire 128 byte cache line from global memory but only 
the lower or upper two sectors of the cache line, as found by Jia et al. [25] and 
confirmed by an Nvidia employee17. Implicitly, L2 is also used to cache 
instructions, constant data, and for the TLB (translation lookaside buffer). 

L1 Cache. A very fast, 128 KB sized unified data cache on every SM on Volta. 
The memory space is shared with the shared memory space, which can be 

                                                 
17 Nvidia Developer Forums. https://forums.developer.nvidia.com/t/pascal-l1-cache/49571/20 
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configured to take up to 96 KB, leaving 32 KB for L1 cache data. When configured 
to cache global memory reads, it also uses a cache line size of 128 bytes, similarly to 
L2. 

To better understand each memory space’s performance impact and put them 
into perspective, the table below provides latency and bandwidth comparisons 
filled with data from the official Nvidia Volta Architecture whitepaper [22] and 
data collected by Jia et al. [25] using micro-benchmarking on a V100-based GPU. 
For on-chip memory the bandwidth is the combined bandwidth of all 80 SMs on 
the V100 to make a direct comparison with off-chip memory possible. Even 
though L1 and shared memory are in the same physical location, we speculate their 
difference in latency is most likely due to the additional cache management 
overhead required for L1 data. 

Memory Latency Bandwidth (Combined) 

Registers (e.g. FMA) 4 cycles (e.g. FMA) ~58,000 GB/s 

L1 ~28 cycles ~12,000 GB/s 

Shared ~19 cycles ~12,000 GB/s 

L2 ~193 cycles ~2,155 GB/s 

VRAM ~1029 cycles ~750 GB/s 
Figure 6: Performance comparison of memory types (V100) 

2.4.4 Memory Access Patterns 

As shown in the previous section, accessing global memory is relatively slow in 
regards to latency and bandwidth in comparison to the other memory spaces. 
Since most data access in applications begins or ends here, it is therefore important 
for a kernel to fully saturate the GPU’s memory bandwidth whenever possible. 

The global memory space is segmented into sectors of 32 bytes. Read/write 
operations are issued per warp, where each thread provides an address. With these 
addresses, CUDA then calculates how many memory sectors it needs to access and 
creates memory transactions based off of that. Each memory transaction can 
consist of one, two, or four consecutive 32 byte memory sectors. Ideally, each and 
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all of these 32 bytes were requested by the warp, i.e. the number of bytes requested 
is close or equal to the number of bytes actually moved by the hardware: 

���_���������� ∶=  
��������������������������ℎ����ℎ���

�������������������������ℎ����ℎ���
 

Since global memory reads/writes are staged through caches and the fact that L2’s 
cache line size is 128 bytes, a warp requesting these 128 bytes could potentially be 
served with only a single memory transaction from global memory. 

Depending on the warp’s distribution of memory addresses, memory access can 
be categorized into different memory access patterns. The ideal access pattern to 
global memory is the aligned and coalesced access pattern, i.e. Figure 7. Aligned 
access requires the address of the requested memory to be a multiple of 32 as the 
global memory space is segmented into sectors of size 32 bytes. A misaligned load 
will cause wasted bandwidth, since irrelevant bytes from the memory sector had to 
be physically transferred, as illustrated in Figure 8. Coalesced access refers to 
consecutive bytes requested by the threads in a warp. Combining these two 
patterns yields the best case scenario. In contrast, seemingly random access to 
memory within the warp yields the worst case scenario, as shown in Figure 10. 
Similarly, accessing the same data, i.e. Figure 9, does not make good use of the 
available bandwidth, as bus utilization is very low. 

 
Figure 7: Ideal case, aligned and coalesced access. Addresses required for the 128 bytes requested 

fall within four sectors. Bus utilization is 100% with no loads wasted. 
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Figure 8: Coalesced but misaligned access. Warp requests 32 consecutive 4 byte elements but not 
from a 128 byte aligned address. The addresses fall within at most five sectors but six sectors are 

loaded. Bus utilization is 66.67%. 

 
Figure 9: All threads in warp request same 4 byte data. The addresses fall within one sector but 

two sectors are loaded. Bus utilization is merely 6.25%. 

 
Figure 10: Worst-case scenario. 4 byte loads are scattered across 32 addresses in global memory. 

Write operations behave similarly to read operations in regards to access 
patterns and memory transactions. They are stored in the L2 cache before being 
sent to the VRAM. 
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2.4.5 Shared Memory Banks and Access Patterns 

When dealing with global memory, good performance can be achieved by using 
optimized access patterns so they are aligned and coalesced with no wasted 
memory transactions. For cases where aligned memory access is not possible, the 
L1 and L2 cache can mitigate performance issues. But memory access that is not 
coalesced and is scattered throughout global memory will still cause performance 
degradation and poor bandwidth utilization. Shared memory can help improve 
global memory access in many such instances. 

For example, when transposing a 2D-matrix in global memory directly you will 
have non-coalesced access, regardless if the data in global memory is laid out as 
rows-of-columns or columns-of-rows. Using shared memory to cache data from 
the original matrix, one could avoid this strided global memory access. A column 
from shared memory can then be transferred to a transposed row in global 
memory. 

Shared memory can also be used for threads within a warp or thread block, to 
cooperatively operate on temporary data in-memory. For example, a temporary 
prefix-sum over input data in a preparation step inside the kernel. 

The shared memory space is partitioned among all thread blocks on an SM and 
a critical resource that can limit kernel occupancy. Access operations to shared 
memory are issued per warp and special care needs to be taken. While physically 
the shared memory is arranged in a linear manner, its access is divided into 32 four 
byte wide memory banks, as illustrated in Figure 11, that can be accessed 
simultaneously. 

 
Figure 11: Mapping physical bytes to shared memory bank indexes 
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If a warp’s memory operations do not access more than one memory location per 
bank, they can be serviced by one memory transaction, as shown in Figure 12 and 
Figure 13. Otherwise multiple memory transactions need to be issued, which will 
decrease shared memory bandwidth utilization. 

 
Figure 12: Optimal parallel access pattern. No bank conflicts, every thread accesses a different 

bank. Maximum bandwidth utilization. 

A bank conflict occurs when multiple addresses of memory operations within a 
warp fall into the same memory bank, as illustrated in Figure 14. CUDA will split 
the memory operations into separate conflict-free memory transactions. With 
every additional memory transaction, the effective bandwidth is reduced by a 
factor equal to the number of total transactions. Multiple threads accessing the 
same address in the same bank can still be served with only a single memory 
transaction, however, since the accessed data in that bank is simply broadcast to all 
requesting threads afterwards. 

 
Figure 13: Irregular access pattern. No bank conflicts, because every thread still accesses a 

different bank. Maximum bandwidth utilization. 
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Figure 14: Irregular access pattern. Several bank conflicts with mutliple threads accessing the same 

bank. Conflict-free broadcast access only possible if threads access the same address within the 
bank. Poor bandwidth utilization. 

The bank a shared memory operation is mapped to can be calculated as follows 
below. An address is divided by four to convert it to an index, since memory banks 
are four bytes wide, followed by the modulo operation with the total number of 
banks, 32: 

���������(�������������) ∶=
�������������

4
 mod 32 

2.4.6 Streams 

A CUDA stream (cudaStream_t) consists of an ordered sequence of host issued 
asynchronous CUDA operations to be executed on the device. By default, all 
CUDA functions implicitly use the NULL-stream. By using additional explicitly 
specified streams to launch multiple simultaneous kernels, we can implement grid 
level concurrency, allowing us to overlap execution of operations. 

 
Figure 15: Example of using three CUDA streams to evenly distribute work 
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A typical pattern in a CUDA program is to first transfer input data from the 
host to the device, execute a kernel on that data, and then transfer the results back 
to the host. Instead, we can overlap the data transfer with kernel execution, thus, 
hiding some of the cost of the data transfer while performing useful work at the 
same time. We illustrate this pattern in Figure 15. 
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2.4.7 Code Comparison 

The below code shows a shortened example of a CUDA kernel summing up arrays 
a and b and storing the results in array c: 

... 

 

void vectorAdd_CPU(int *a, int *b, int *c, int n) 

{ 

    for(int i=0; i<n; ++i) 

        c[i] = a[i]+b[i]; 

} 

 

__global__ 

void vectorAdd_GPU(int *a, int *b, int *c) 

{ 

    int i = threadIdx.x; 

    c[i] = a[i]+b[i]; 

} 

 

int main() 

{ 

    constexpr int arraySize = 1024; 

     

    ... 

     

    //calculate sums on host 

    vectorAdd_CPU(a, b, c, arraySize); 

     

    ... 

     

    //calculate sums on GPU 

    constexpr int gridSize = 1; 

    constexpr int blockSize = arraySize; 

    vectorAdd_GPU<<<gridSize, blockSize>>>(a, b, c); 

    cudaDeviceSynchronize(); 

     

    ... 

} 

As seen, programming CUDA kernels can be very similar to programming regular 
C/C++ functions. To allocate or transfer data to the GPU, CUDA provides several 
functions similar to C’s own malloc(), free(), memcpy(), memset() etc. 
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Calling host classes and functions from device code is not possible, including 
the C’s Standard Library or the C++’s Standard Library. While some ported 
functions are included with CUDA (e.g. printf()), data structures and algorithms 
need to be re-implemented and most likely redesigned to work efficiently in 
CUDA. 

2.5 InfiniBand with RDMA & GPUDirect 

InfiniBand is a networking communication standard used in high-performance 
computing [26]. Similar to Ethernet, it is used as an interconnect between servers 
or storage systems. It features a very high throughput of up to 50 Gb/s per link 
with latency below 0.5 µs18. Upcoming InfiniBand versions with up to 250 Gb/s per 
link are already planned19. Typically, four links are aggregated on most systems for 
improved bandwidth. Aggregated links of eight or twelve are possible but normally 
used for clusters or supercomputers. When compared to the bandwidth of regular 
main memory, it becomes clear that network bandwidth is no longer the 
bottleneck in previously network bound applications. In such a scenario, assuming 
the NIC is a PCIe-based device, PCIe itself can become the new bottleneck [27]. 

In the past years, RDMA (Remote Direct Memory Access) capable network 
cards have decreased in price and made their way into datacenters. InfiniBand 
supports RDMA, which is a feature that allows direct access to the main memory 
of a remote host with little or no CPU overhead. Requests are sent directly to the 
NIC without involving the kernel and are serviced by the remote NIC without 
interrupting the CPU. 

GPUDirect extends this concept to the GPU. It allows remote hosts to directly 
access the GPU’s memory for reading and writing, thus bypassing the main 
memory of the host machine. 

However, most systems still rely on Berkeley sockets, even though several cloud 
services already provide RDMA-enabled devices [28]. A reason is believed to be 
ease of use [28]. For InfiniBand’s RDMA, the low level ib_verbs API has to be used. 

                                                 
18 Mellanox Technologies. InfiniBand Essentials Every HPC Expert Must Know. 

http://www.hpcadvisorycouncil.com/events/2014/swiss-workshop/presos/Day_1/1_Mellanox.pdf 
19 InfiniBand Trade Association. InfiniBand Roadmap. https://www.infinibandta.org/infiniband-

roadmap/ 
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Before being made available for remote access, the memory region also needs to be 
pinned so the OS kernel does not page out the memory region. Client and server 
processes need to coordinate and have to be converted to use these RDMA-specific 
techniques. 

Nevertheless, for transferring data between nodes this allows for very efficient 
zero-copy transfers in comparison to the typically used sockets, which require the 
data to be copied between buffers and the involvement of the kernel and CPU on 
both hosts [27]. 
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3. Thesis Approach 

In this chapter we introduce a new algorithm for parsing CSV data that is 
optimized for GPUs. When designing our approach, we focused on the hardware’s 
main advantages and how to make use of them. Optimizing for GPUs is 
challenging, because parsers typically have complex control flow. However, fast 
GPU kernels should regularize control flow to avoid execution penalties caused by 
warp divergence. Therefore, our approach explores a new trade-off: we simplify 
control flow at the expense of additional data passes and, thus, more memory 
bandwidth. Overall, our approach adapts CSV parsing to fully utilize the GPU’s 
architecture. This includes its very high memory bandwidth, low cache latencies, 
and high parallelism. Simultaneously, we focused on the hardware’s shortcomings 
and how to work around them. Mainly branching, warp divergence, and inactive 
threads. 

We first give a conceptual overview of our approach using the flowchart in 
Figure 16. Each step is then described and discussed in more detail with its 
challenges and solutions in the following sub-chapters. 

 

 
Figure 16: Conceptual overview of our approach 
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Conceptually, the CSV input data is first transferred onto GPU memory from a 
data source, such as main memory or an I/O device. The input data is then split 
into equally sized chunks to be processed in parallel. With the goal to index all field 
positions in the input data, we first count the delimiters in each chunk and then 
create prefix sums of those counted delimiters. Using these prefix sums, the chunks 
are processed again to create the FieldsIndex. This allows the input data to be 
copied to column-based tapes in the next step. Tapes enable us to vectorize 
processing by transposing multiple rows into a columnar format. Finally, each tape 
is deserialized in parallel. The resulting data is column-oriented and can then be 
further processed on the GPU or copied to another destination for further 
processing, e.g. to the host’s main memory. 

In this default Fast Mode, the parser may be unaware of the correct quotation 
scope when fields are enclosed in quotation marks. Fields may themselves contain 
field delimiters, resulting in an incorrect FieldsIndex. To mitigate this problem and 
create a context-aware FieldsIndex, we introduce the Quoted Mode. It is an 
alternative parsing mode with early context detection, that additionally keeps track 
of quotation marks and allows us to parallelize parsing of quoted CSV data but is 
more processing intensive than the default parsing mode. The main focus of our 
work is on the default Fast Mode, however, as well-known public data sources 
indicate that quotes are rarely used in practice20 21. 

For now, we will assume the CSV input data already resides in GPU memory. In 
the last sub-chapter, we will present Streaming, which allows incoming chunks of 
data to be parsed without the need for the entire input data to be on the GPU. 

Overall, our data-parallel CSV parser solves three main challenges: partitioning 
the data into chunks for parallel processing, determining each chunk’s context, and 
fast deserializing of fields with their correct row and column number in parallel. 

                                                 
20 Kaggle. https://www.kaggle.com/datasets?filetype=csv 
21 NYC OpenData. https://data.cityofnewyork.us/browse?limitTo=datasets 
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3.1 Parallelization Strategy 

One of the GPU’s strengths lies in highly parallel processing, making it an ideal 
platform for problems in which data can be split for parallel computations. 
However, text-based data formats, such as CSV, are challenging to parse in parallel. 

Load Balancing Warps. Parallelizing by rows requires iterating over the entire 
data first and will also result in unevenly sized row lengths. This will cause 
subsequent parsing or deserialization threads in a warp to stall during individual 
processing and, thus, not make maximum use of the hardware. Instead, Figure 17 
shows how we naively split the input data into equally sized chunks that are 
independent of each other and individually processed by a warp. 

 
Figure 17: Splitting input into equally sized, independent, chunks 

This allows all threads in a block to keep busy as they transfer and process the same 
amount of data. And because of the chunks’ spatial locality and equal sizes, all 
warps within a block are subject to the similar or even same latencies when 
transferring their data from global memory or L1/L2, further reducing unnecessary 
delays within a thread block, thus, allowing a new block to run sooner on the SM. 
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Parallelization Granularity. The choice of chunk size and how a warp loads and 
reads its chunks impacts the parallelizability of the delimiter-counting process and, 
ultimately, the entire parsing process. Because a warp has 32 threads, the smallest 
reasonable chunk size is 32 bytes. This gives every thread in a warp exactly one 
character to look at and check whether it is a delimiter or not. However, as L1’s 
and L2’s cache line size is 128 bytes and a single memory transaction can serve up 
to four consecutive 32 byte sectors, i.e. 128 bytes, increasing the chunk size to at 
least 128 is plausible. This will give each thread in a chunk four bytes to look at, 
either four consecutive bytes or four individual bytes in a 32 byte stride. At first 
glance, increasing the chunk size further past 128 bytes seems counter-productive, 
as that could increase resource usage by every thread block and, thus, reduce 
overall parallelizability. However, common optimization techniques like loop 
unrolling prove that an application’s execution speed can often be reduced at the 
expense of data size, essentially a space-time tradeoff. As such, having a warp 
process multiple consecutive 128 bytes in a loop could overall reduce processing 
times. CUDA’s scheduler for warps and blocks will have less overhead, as well as a 
reduced overhead associated with the launch of every new thread block or warp, 
e.g. calculating a warp’s chunk ID. 

Vectorization. To analyze these access patterns and identify chunk sizes that 
allow for the most optimal loading and processing, we implemented several kernels 
that each load chunks at different sizes. We defer further details to Chapter 5.2.1. 
Going forward, the forceful loading of four consecutive bytes as an int to a register 
will be our strategy for loading and accessing the chunks. 

One caveat of our chosen strategy is that the last thread of the last chunk will 
cause a memory access violation for input data that is not a multiple of 128 bytes. 
While threads within the last warp can simply calculate if they are still in bounds to 
load their four bytes, the last valid thread would need to first check for the number 
of remaining bytes and then take an alternative path that accesses the one, two, or 
three remaining bytes individually. This would not only add complexity to the 
code but also an additional branch and potential warp divergence, resulting in a 
drop in performance. Instead, we pad the input data with NULLs to a multiple of 
128 bytes during input preparation. Conventionally, strings are NULL-terminated, 
so any such occurrence in a thread, or even external applications, will simply cause 
these padded bytes to be ignored during loading or later parsing. This not only 
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avoids the additional branch to check for the availability of all four bytes but also 
the branch needed to check whether a thread within a warp is still in bounds for 
the warp’s current loop iteration. 

3.2 Indexing Fields 

We can now start processing the chunks. Our end goal in this phase is to have all of 
the field positions of the input data indexed in the FieldsIndex. This index will be 
an integer array of yet unknown size rows*columns with a sequence of continuous 
field positions. This is a three-step approach. 

In the first pass over the chunks, every warp counts the number of field 
delimiters in its chunk. The number of delimiters in each chunk is stored in an 
array. For optimization purposes, record delimiters are treated as field delimiters, 
thus, creating a continuous sequence of fields. A field’s row and column numbers 
can later be inferred with: 

���(����������) ∶= ����� �
�����������

����������
� 

������(����������) ∶= ���������� mod ������� 

In the second phase, we compute the chunks’ field offsets with an exclusive 
prefix sum, as illustrated in Figure 18. 

 
Figure 18: Computing the field offset for every chunk using a prefix sum 

At the end of the prefix sum calculation, the total number of fields is automatically 
available, and consequently rows, so the necessary space in global memory for the 
FieldsIndex array can be allocated. 

In the third and final phase, the FieldsIndex can now be filled in parallel. We 
perform a second pass over all the chunks and scan for field delimiters again. The 
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GPU memory’s high bandwidth keeps the performance penalty of additional 
passes over data comparatively low. As shown in Figure 19, using the prefix sum at 
a chunk’s position, the total number of preceding fields in the input data can 
instantly be inferred. 

 
Figure 19: Using the chunk’s prefix sum to infer number of preceding delimiters 

We efficiently compute the FieldsIndex using millions of warps. To have a thread 
correctly determine a field’s index when encountering its delimiter, it needs to also 
know how many delimiters the warp’s preceding threads already had and will have. 
So, for every 128 byte loop iteration over the chunk, threads first count how many 
delimiters they have in their respective four byte sector. Since threads within a 
warp can efficiently access each other’s registers, calculating an exclusive prefix 
sum of these numbers is fast and will now result in the complete information 
needed to determine a field’s exact position and index to store it in the FieldsIndex 
array, with i being the i-th byte of the four byte sector: 

�������� ∶= �ℎ����� × �ℎ������� + ������ × 4 + �������� × 128 + � + 122 

������������ ∶= �ℎ������������[�ℎ�����] + �������������[������] + ��23 + 1 

����������� ∶= 0 

The complete FieldsIndex then allows to not only instantly look up a field’s 
position in the input data, but also its length: 

����������ℎ(����������) ∶= �����������[���������� + 1] − �����������[����������] − 1 

                                                 
22 Adding one gives us the position of the actual field instead of the encountered delimiter 
23 di is the running count of delimiters in this four byte sector, for cases where it has more than one 
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Quoted Mode 

For the Quoted Mode, a few additional steps need to be taken throughout to create 
a correct FieldsIndex. When counting delimiters in the first phase, quotation 
marks are also counted in a similar manner simultaneously. After calculating the 
prefix sums for the delimiters, the prefix sums for the quotation marks are created 
as well. In the third phase, during the second pass over the chunks, quotation 
marks are also counted again along the delimiters and prefix sums are created for 
both within the warp. We can now exploit the fact that a character is considered 
quoted whenever the number of preceding quotation marks is uneven. So, now 
before writing a field’s position into the FieldsIndex when encountering a field 
delimiter, first the number of total preceding quotation marks at this position is 
checked. Should that number be even, the field’s position to the FieldsIndex is 
written as before, regardless of how many preceding quoted field delimiters exist. 
Otherwise, a sentinel value of 0 is written to the FieldsIndex at the index the field’s 
position otherwise would have been written to, representing an invalid field 
delimiter. After the FieldsIndex is created, a stream compaction pass is done on the 
FieldsIndex to remove all invalid, i.e. quoted, field delimiters and remove gaps 
between valid, i.e. unquoted, field delimiters. We illustrate an example with valid 
and invalid field delimiters in Figure 20. 

 
Figure 20: Additional pass in Quoted Mode to remove invalid delimiters 

Doing this additional step separately instead of during the actual FieldsIndex 
creation, removes the complexity from the kernel that would otherwise introduce 
significant processing delays due to branching, warp divergence, and non-
coalesced memory write operations. 

We classify this approach as early context detection. 
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3.3 Deserialization 

Efficient deserialization on the GPU is a many-sided problem. Not only is the 
question of how to parallelize deserialization challenging, but also how to keep the 
entire warp occupied while doing so. 

A naive approach is to have every thread deserialize a field. However, we must 
assume that neighboring columns have different data types. So, constructing a 
generic kernel that can handle all data types involves many branches, causing warp 
divergence. Instead, we explore three different approaches to avoid warp 
divergence: row-based using Dynamic Parallelism, column-based with grouped 
warp lanes, and column-based with maximum column lengths. 

Approach: Dynamic Parallelism (Row-Based) 

To allow parallelization and have threads in a warp deserialize different data types 
without warp divergence, we experimented with an approach that involves 
Dynamic Parallelism in CUDA. Dynamic Parallelism allows a kernel to launch 
another kernel and even synchronize on this newly nested work. In our approach, 
a generic deserialization kernel reads a field in every thread and, based on its data 
type, launches a specific deserialization kernel with a grid size of one and a block 
size of 32. For integers, every thread looks at one character, converts it to a digit, 
and multiplies it by 10��������������������. The warp’s sum of these numbers is the 
resulting deserialized integer. Using this approach, we could potentially skip 
writing out the FieldsIndex in the previous step and instead just directly launch the 
appropriate deserializer kernel when encountering a field delimiter. 

While this is a very inefficient use of resources, since a field of length five would 
result in 27 unoccupied threads, initial testing showed performance to be above 
PCIe v3.0’s bandwidth. However, performance drops instantly when the input data 
grows to a few thousand fields that need to be deserialized. CUDA’s scheduler uses 
a launch buffer in global memory to keep track of pending kernel launches. Once 
this buffer is full, it uses a virtualized buffer in the host’s main memory [29]. 

This Dynamic Parallelism approach quickly saturates the native buffer with 
scheduled deserialization kernels for each field, leading CUDA to fall back to the 
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much slower virtualized buffer. While CUDA offers the possibility to increase the 
buffer on the GPU, this approach does not scale well. 

Approach: Grouped Warp Lanes (Column-Based) 

It becomes clear that using any row-based approaches requires adding lots of 
complexity to work in parallel. Complexity that is likely to cause idle threads. Any 
approach that is column-based, however, can make use of the fact that all fields in 
the column have the same data type, thus, giving us an easy pattern to parallelize 
on. While such an approach would not utilize the available bandwidth very well, 
given a GPU’s high memory bandwidth, it is expected to be the most optimal 
solution. 

Building upon the deserializer from our Dynamic Parallelism approach, we 
implemented a column-based deserializer kernel that can make use of all threads in 
a warp. For integers of length eight, this means the warp can be divided into four 
sub-groups, each deserializing one field of the same column. Instead of 32 threads 
working on deserializing one number, this approach has these 32 threads working 
on four numbers simultaneously using the same instructions, thus, keeping the 
occupancy much higher without warp divergence and making much better use of 
the available hardware. The cost of calculating each lane’s exponentiation of base 
10 remains relatively high, however. Using the fast constant memory space for a 
memoization technique is not viable, since accesses to constant memory need to 
have a unique address within the warp to be efficient. 

Approach: Columns with Maximum Lengths 

To remove the cost of determining each lane’s exponentiation of base 10 and the 
cost of cooperatively calculating a sub-group’s sum, we extend our above approach 
with an alternative solution. Every thread in the warp deserializes one field, 
allowing the entire warp to deserialize 32 fields in parallel. Similar to SQL’s DDL 
(Data Definition Language), users of CUDAFastCSV specify a column’s maximum 
length along its type for deserialization purposes. To keep the warp’s memory 
access pattern optimal, every thread first consecutively reads four aligned bytes 
into a dedicated register until enough bytes were read to satisfy the specified length 
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of the column. When all column fields are contiguous in memory, this will also 
cause the warp to read the data in an aligned and coalesced fashion with a high 
bandwidth utilization, serving the entire warp with just one memory transaction. 
In a loop equal to the size of the specified column length, every thread can now 
read and convert each digit from a register while calculating the running sum, as 
illustrated in Figure 21. 

 
Figure 21: Thread reading aligned bytes to register for looped deserialization 

While this approach can still leave some threads in the warp early with no work, 
i.e. when neighboring fields in a warp are of various length, this approach causes 
no warp divergence and only uses one branch in its entire kernel. 

We identified this approach as the fastest deserialization strategy for our 
algorithm by implementing all three approaches as kernels for comparison. We 
defer further details to Chapter 5.2.1. 

3.4 Optimizing Deserialization: Transposing to Tapes 

Since our deserializer uses a column-based approach, its memory access pattern 
only allows for a coalesced and aligned memory access with full use of all the 
relevant bytes when given the optimal circumstances. CSV, however, is a row-
oriented storage format. The optimal circumstances would come only into effect 
when there is just one column in the input data or when the field’s data types are 
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identical along a multiple of 32 wide field count. For columns of various data types 
performance decreases significantly. In Figure 22 we illustrate this. 

 
Figure 22: Column-based deserialization performance scaling for unique data types on 1080 Ti 

The analysis shows the deserializer works the most efficiently when all its input 
fields are contiguous in memory. To improve deserialization performance for 
columns with various data types we make use of that fact and introduce 
deserialization with tapes. Tapes are column-based and enable us to vectorize 
deserialization by transposing multiple rows into a columnar format. 

A separate tape for every column is created in an additional step during the 
parsing process. Given a column’s length, we define a tape’s width, tapeWidth, 
equal to its specified column length. The tapeLength is equal to the number of 
fields it will contain, i.e. the number of rows of the input data. Consequently, a 
tapeSize is the size of the tape’s buffer in memory and is equal to ��������ℎ ×

���������ℎ. For every field in FieldsIndex, the input’s field value is copied to its 
column-individual tape at the following address in memory: 

�����������(�����) ∶= �������(�����) + ���(�����) × ��������ℎ���(�����) 

Field values that do not fully utilize their tapeWidth are right-padded with NULLs 
on the tape. We illustrate this approach with an example in Figure 23. 
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Figure 23: Visual representation of deserialization tapes 

We defer its evaluation with further details to Chapter 5.2.1. 

For our Fast Mode, writing out the FieldsIndex to GPU memory can be skipped 
and instead be temporarily written to shared memory. When a chunk’s FieldsIndex 
is complete, the field values can be directly copied onto the tapes, essentially 
combining two steps of the process into one. However, only having a chunk’s own 
isolated FieldsIndex, the length of the chunk’s very last field is not calculable. We 
work around this obstacle by saving each chunk’s first delimiter offset along the 
chunk’s delimiter count during the first step of the parsing process. 

Combining these two steps saves us from writing out the huge FieldsIndex and 
from having to do a third pass over the input data for creating the tapes, as is still 
the case for the Quoted Mode. 

3.5 Streaming 

We extend our approach to allow streaming. This enables us to start parsing the 
input data before it is fully copied onto the GPU, i.e. reducing overall latency, and 
for input data that is too big to otherwise fit into the GPU’s memory. 

The input data is split into batches before being copied to the GPU’s memory for 
individual and independent parsing without the need for the complete input data 
to be on the GPU. We refer to an individually split part of the input data as a batch, 
representing a batch of aforementioned chunks. The batches are equal in length 
and of size streamingBatchSize.  
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“An orphan has no past, a widow has no future.” 
- Common mnemonic in typesetting 

In typesetting, widows are lines at the end of a paragraph left dangling at the top 
from the previous page. Orphans are lines at the start of a paragraph left dangling 
at the bottom for the next page. Both are separated from the rest of their 
paragraph. Batching our input data creates a similar effect that we need to account 
for. In a batch, we consider the last row an orphan, unless it is terminated by a 
record delimiter, making the orphan empty. This row will not be parsed by its 
batch. Instead we copy the orphan’s bytes to a temporary widowBuffer. The next 
batch will prepend available data from the widowBuffer to its batch data before 
starting the parsing process. Figure 24 illustrates our concept. 

The widow buffer’s size is pre-defined by the streamingWidowBufferSize. We set 
its default size to 10 KB. This default size is sufficient to handle rows spanning over 
10,000 characters. Longer rows would end up being an orphan and not fully fit into 
the widowBuffer. 

 
Figure 24: Widows are taken from the previous batch, while orphans are left for the next batch 

Since our parser kernel reads data from global memory in four byte pieces from 
its chunk, its memory access needs to be aligned to a four byte memory address to 
avoid a memory alignment error. A widow whose size is not a multiple of four, 
would trigger such an error. We work around this issue by further padding the 
batch’s data with one, two, or three NULL bytes. When parsing, these leading 
NULLs are then simply ignored by the first lane of the very first chunk. 
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4. Implementation 

In this chapter, we show the practical implementation of the previously discussed 
approach and introduce the components of CUDAFastCSV, our C++ 
implementation of the presented work. 

We will first give an overview of the most relevant components of our 
architecture, divided into groups. Each group will start with a class diagram of its 
components, containing each class’ most relevant properties and methods. We 
then shortly describe each component and its function within the architecture. 

In the next subchapter we will present how the components interact with each 
other and give a short breakdown of the processing cost for each step presented in 
the thesis approach. We end this subchapter by discussing some of the restrictions, 
optimizations, and challenges we faced during our implementation. 

4.1 Components 

For simplicity and a better overview of this subchapter, we group the components 
into six categories: Input Reading, Deserialization, Utilities, Parsing, RDMA, and 
Main. 
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4.1.1 Input Reading 

 
Figure 25: UML class diagram of input relevant components 

AbstractInputReader. Since our input CSV data can originate from different 
sources, including network sockets, GPU memory, hard disk on host machines, or 
even from other applications, CUDAFastCSV uses an abstract base class to handle 
its input. The subclasses need to at least implement size(), open(), readAll(), and 
close() and may override the other methods for any unusual behavior. 

BufferReader. Simple implementation that uses input data already residing in 
the host’s main memory. 

MemoryMappedFileReader. Using mmap() on Unix systems and 
MapViewOfFile() on Windows, this class is used for reading files from the host’s 
file system. 

RDMAReader. An implementation of an input reader that reads the input data 
from a remote machine, using RDMA, directly onto GPU memory, using the 
RDMAClient class (described in the RDMA group). 
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4.1.2 Deserialization 

 
Figure 26: UML class diagram of deserialization relevant components 

AbstractColumnType. This is the base class to implement data type specific 
deserialization logic as a CUDA kernel and provide requirements for the 
deserialization tape. The dataSize() tells CUDAFastCSV how much bytes a 
deserialized field will occupy to pre-allocate the result buffer, while tapeWidth() 
returns the required tape width needed for the tape buffer. The deserializeTape() 
method will be called to launch the deserialization kernel. In some cases, the tape 
buffer can be used as a result, e.g. when strings do not need to be further processed 
and already contain a null-terminated character by nature of the tape’s design, so 
redirectTapeAsResult() can be overridden to let CUDAFastCSV skip the 
deserialization and instead simply copy or use the tape buffer as the result. Using 
the DECL_CSVCOLUMNTYPE(className) macro, subclasses are automatically 
registered and referenced in CUDAFastCSV. 

UInt*ColumnType. Deserializes unsigned integer columns. Similar to SQL’s 
DDL, the specified length refers to the input’s maximum possible field length, not 
the deserialized integer’s number of bytes. Fields of length 1 and 2 deserialize to 
uint8_t, while 4 deserializes to uint16_t. Longer fields use uint32_t. 

Float*ColumnType. Deserializes to the float data type. 

CharColumnType. For strings, the column’s length is passed to the constructor. 
parseStrings can be set to true to remove quotation marks. 

SkipColumnType. Similar to a projection operator, a special column type that 
can be used to fully ignore an irrelevant column in the input data to save parsing 
and processing costs. 
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4.1.3 Utilities 

 
Figure 27: UML class diagram of helper components used throughout CUDAFastCSV 

AbstractErrorHandler. An interface to be implemented by a class to handle 
errors that arise during CUDAFastCSV’s execution. 

AbstractRunnable. To allow CUDAFastCSV to be used as a stand-alone 
application for either parsing on the client machine or as an RDMA file server. 

Options. Holds all configuration and customization for CUDAFastCSV. All 
properties can be changed from the command line using parameters. 

KernelOptions. A sub-class of Options that is copied to constant memory to be 
used by the parser and deserialization kernels and holds additional contextual 
information needed for the current batch during execution. 

CLI. Implements a command line interface for CUDAFastCSV. 

MemoryPool. To save latency costs from many small cudaMalloc() calls of 
various and changing sizes, we allocate a large buffer on the GPU, whose memory 
is then managed and reused as needed. 

ExclusiveMemoryPool. Distributes dedicated MemoryPools to individual 
CUDA streams. 
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ThrustMemoryPool. For device wide prefix-sum calculations and stream 
compaction in our parser we use Thrust, an algorithm library shipped with the 
CUDA SDK. Internally, Thrust uses memory on the GPU as a helper buffer every 
time it is used. ThrustMemoryPool provides a custom allocator to Thrust that uses 
our MemoryPool instead to avoid the overhead from constantly allocating and 
deallocating these buffers. This would otherwise be especially punishing when 
streaming, as another stream might be blocking the PCIe bus with a transfer of a 
batch of input data of several hundred megabytes, causing the parsing thread to 
stall. Using this custom allocator, we were able to improve overall performance by 
up to 15%. 
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4.1.4 Parsing 

 
Figure 28: UML class diagram of components relevant to parsing 

ParserResult. Result object that holds the deserialized fields from the processed 
batch with additional helper methods and the batch’s contextual information. The 
resultsDevice property is a column-based array of pointers to global memory 
holding the deserialized values that need to be cast to their underlying data type. 

AbstractCSVParser. The base class for all parser implementations of 
CUDAFastCSV, providing it information about data padding and memory 
alignment requirements as well as the actual implementation as a kernel. exec() is 
called for every batch and should synchronously return the ParserResult. 

FastParser. The implementation of our proposed CSV parser in its Fast Mode. 
During its initialization it allocates reusable buffers parsingBuffer, tapeBuffer, 
resultBuffer, and thrustMemoryPool on the GPU to store intermediate and final 
results. To avoid results from being changed by the next batch’s parsing while the 
current batch is still processing its results in another thread, tapeBuffer and 
resultBuffer are ExclusiveMemoryPools. 

QuotedParser. A derived parser for the Quoted Mode that adds the additional 
steps needed to enable our parser to consider the quotation scope when indexing 
valid field delimiters. 
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4.1.5 RDMA 

 
Figure 29: UML class diagram of RDMA specific components 

For our RDMA and InfiniBand implementation we are using the Infinity library by 
Claude Barthels24. It is a lightweight C++-wrapper around the ib_verbs C-API that 
simplifies working with RDMA and InfiniBand. 

RDMAServer. Starts a file server-like CUDAFastCSV instance that allows 
remote CUDAFastCSV clients to connect to this machine and directly read input 
data (property inputReader) using RDMA and InfiniBand. It automatically pins 
the memory, registers it with the RDMA device, and creates a token for 
communication with remote clients. 

RDMAClient. A client wrapper that connects to a remote server and copies 
input data directly into a GPU buffer. Memory is automatically registered and 
managed when used with the RDMAReader-wrapper for reading input data. 

  

                                                 
24 Claude Barthels. Infinity. https://github.com/claudebarthels/infinity/ 
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4.1.6 Main 

 
Figure 30: UML class diagram of components that act as a facade for CUDAFastCSV 

WorkStream. Represents a CUDA stream and binds a single batch to it for full 
processing with additional metadata. In addition to its default Uninitialized state, 
a single WorkStream, and consequently the batch and CUDA stream it represents, 
can be in one of six states: Free, TransferringInput, PendingParse, Parsing, 
PendingOutputTransfer, or TransferringOutput. 

WorkQueue. A queue data structure holding WorkStream items that wait for 
processing. Once their preceeding batch is finished in the queue, the queue’s 
callback function is called with the next WorkStream item for processing. 

CUDAFastCSV. The main facade of our work, putting all the components 
together. It uses the provided options, parser, and inputReader to process CSV 
input data with the help of three WorkQueues. The queueFree holds WorkStreams 
that are free to be assigned a new batch to. When a WorkStream is finished with 
transferring its batch’s input data to the GPU, it waits in queueParse for parsing. 
Once finished parsing, it gets put into queueFinished for custom result processing 
or transfer of the batch’s result output. When streaming is disabled, simply one 
WorkStream is used to process the entire input as one batch. 
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4.2 Implementation Details 

In this section, we go more in-depth on some of our implementation particulars. 
We start with an overview as well as some of the specific optimizations we 
underwent. Next, a detailed explanation of the streaming process using 
WorkStreams and WorkQueues is given. A short time breakdown of 
CUDAFastCSV’s processing stages follows. Finally, we provide a list of our 
implementation limitations with their reasoning. 

Our implementation provides system-specific implementations to support all 
features under Linux and, with the exception of RDMA, all features under 
Windows. 

4.2.1 Optimizations 

To further improve the performance of our parser, we optimized multiple areas of 
our implementation. 

In general, our parser makes use of the __forceinline__ CUDA compiler 
directive, whenever possible, to guarantee the compiler inlines the function’s code, 
favoring speed over space. Similarly, we annotate static for-loops with #pragma 
unroll to hint to the compiler it should fully unroll the loop. To improve 
throughput, we also try to avoid immediate read-after-write register dependencies 
in the kernels. 

Kernel Fusion Optimization 

For Fast Mode our intention was to skip writing out the FieldsIndex to GPU 
memory and instead write it to shared memory temporarily and essentially 
combine field indexing and tape copying into one step. We realize this by storing 
the chunk’s own local FieldsIndex in shared memory. 

Data Type Optimizations 

CSV files that are larger than 4 GB are parsed using streaming. Except for the 
AbstractInputReader and its subclasses, CUDAFastCSV exclusively uses the 
uint32_t data type for handling input data sizes or index positions of fields, 
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limiting it to 4 GB of input data in these situations. This limitation was a deliberate 
design choice. Considering the size of the FieldsIndex and some of the data that is 
stored in the parser’s buffers, using uint64_t or size_t over uint32_t would 
require twice the amount of data to be read and written several times, causing not 
only much longer transfer times but also reducing parallelism when stored in 
shared memory. 

The FieldsIndex, when stored in shared memory, is an array of type uint8_t. As 
described in the Thesis Approach, when creating the FieldsIndex we first count the 
delimiters in every lane in the warp and then create a prefix-sum for the warp to be 
able to determine the number of preceding fields in the warp. The lane’s prefix-
sum is stored in shared memory for every warp. The prefix-sum calculation in the 
warp is then done as a tree-reduction using __shfl_up_sync(). Since a warp has 32 
lanes and each lane can only contain four delimiters or four quotation marks at 
most during a 128 byte read, the array’s data type uint8_t is sufficient, as no warp 
will exceed 255 total delimiters or quotation marks. 

Tunable Buffer Sizes 

When the FieldsIndex is stored in shared memory, its exact size needs to be 
allocated before kernel launch, as shared memory space is limited on the SM. 
Accounting for the worst case scenario of having only empty fields in a chunk of 
size, e.g., 4096, we would need to reserve 16 KB of shared memory resources for 
every warp. This severely limits parallelism for an edge case that might never 
happen. Instead, we provide the warpIndexBufferSize parameter, which limits the 
maximum number of found fields in a chunk within a warp and is used to reserve 
the kernel’s shared memory space in Fast Mode or, in Quoted Mode, the required 
space in global memory for the FieldsIndex. Since the default chunkSize is 2048 
bytes, warpIndexBufferSize defaults to 512 field positions, i.e. 2048 bytes. Both 
parameters can be tuned in accordance, improving performance based on the 
underlying data characteristics of the CSV input data. Should a chunk’s field count 
exceed this limitation, i.e. not all field positions can be stored in shared memory, 
the application will not cause a memory violation and crash but instead gracefully 
stop its current parser and emit an appropriate error message that includes a 
suggestion for a new parameter value. 
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The tapeBuffer and resultBuffer of our parser implementation have a similar 
field count limitation and tuning capability. Because we reset these buffers for 
every batch by filling them with NULLs, their size should be small to reduce the 
runtime of the cudaMemset() operation but large enough to fit all of the rows and 
columns: 

�������������� ∶= ���� × � ��������ℎ[���]

���������

�����
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As such, a good estimation of the number of rows in the input data or its batch can 
further increase performance. Considering our tape design and that resulting 
string values occupy the same space, or in the case of short deserialized numbers 
potentially occupying even more space than their raw input values, both of these 
buffers are by default set to twice the input size or twice the streamingBatchSize 
when streaming. 

For the Fast Mode, the parser uses the parserBuffer to store the delimiter counts 
for every chunk and for storing the positions of the first field of every chunk: 

�ℎ������������ ∶= ���� �
���������

��������
� 

������������������� ∶= 2 × (�������� × �ℎ������������ × ������(����32_�)) 

For the Quoted Mode, it uses the parserBuffer to store the delimiter counts and 
quotation mark counts in every chunk, as well as the actual FieldsIndex: 

������������������� ∶= 2 × (�������� × �ℎ������������ × ������(����32_�)) 

+ �������� × �ℎ������������ × ������������������� 

The parser’s thrustMemoryPool size is fixed to 32 KB. During our tests, Thrust’s 
buffer requirements never exceeded 8 KB in our implementation. To 
accommodate for any potential internal code changes of Thrust in the future, we 
opted for 32 KB. Given the dimensions of our input files in comparison, tuning 
this parameter is irrelevant and only yields improvements in the margin of error. 
For the Quoted Mode, this buffer is fixed to 32 MB due to the additional stream 
compaction step. 
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4.2.2 Data Streaming 

As shortly introduced in Chapter 4.1, we implement streaming using WorkStream 
items, representing a CUDA stream and a batch for processing, with the help of 
three WorkQueues to queue these WorkStream items for individual processing. 
Every WorkStream item has a dedicated batchBuffer in the GPU’s device memory 
that is used to copy its batch’s chunks into. The size the input data is split into for 
streaming is controlled by the streamingBatchSize parameter. To accommodate for 
leading widow data and additional data padding, the WorkStream’s actual size of 
the batchBuffer is larger than streamingBatchSize: 

������� ∶= ������. �������������������                                                   

����ℎ���������� ∶= ������������������������ + �������������ℎ���� + ������� 

For RDMA input data, this batchBuffer is also automatically registered for 
GPUDirect transfers via RDMA. 

 
Figure 31: State diagram of a WorkStream item and the three WorkQueues 
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The states a WorkStream goes through in its lifecycle and the tasks it performs 
to realize our streaming approach are visualized in a state diagram in Figure 31. At 
initialization, multiple WorkStream items are created to fill the processing 
pipeline. The number of created items is controlled by streamingParallelism and 
defaults to four. Besides the one item being currently parsed, one item being fully 
transferred and waiting for parsing, and one item’s results being transferred back 
to the host, this leaves one more item to be transferred to GPU memory. 

It then goes through multiple stages for every batch it gets assigned to until 
there are no more batches left in the input data. To manage multiple items waiting 
in the same state we use WorkQueues (first-in-first-out) in a separate host thread 
that automatically call the next processing stage for the top item or, if the queue is 
empty, wait for a new item to be queued for processing.  

In the following, we describe each stage of the processing pipeline. 

Free State. Items in the Free state are queued and waiting to be assigned a new 
batch of chunks to. 

Transferring Input State. In TransferringInput the appropriate input data is 
copied to GPU memory. The data is then padded with NULLs to avoid additional 
branches in the kernel for checking data validity when reading 128 bytes of data in 
a warp, as described in the Thesis Approach chapter. 

Pending Parse State. Once the item is fully transferred, it waits in PendingParse 
for the previous WorkStream to finish parsing and deserializing. 

Parsing State. In Parsing, the parser’s internal state is first reset. The orphan 
data from the previous batch, now referred to as the widow, is prepended to the 
data in the batch buffer. To avoid a memory alignment error, the data pointer is 
then realigned to a four byte address with up to three additional leading bytes, 
which the kernel will skip. Once the parser’s pre-conditions are checked for the 
new data and the new KernelOptions copied to constant memory, the parser is 
executed and the results saved to parserResults. Lastly, the orphan part of the batch 
buffer is copied to the dedicated widow buffer on the GPU. 

Pending Output Transfer State. The item now waits as PendingOutputTransfer 
in the last queue for its results to be processed. 
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Transferring Output State. Results are either copied to the host’s main 
memory or processed further on the GPU in TransferringOutput. 

The batch is then considered fully processed and the WorkStream item is either 
put back into the Free queue or deleted if there are no more batches left to be 
assigned to WorkStream items. 

4.2.3 Time Breakdown of Processing Stages 

In Figure 32 we give an overview of the relative performance costs of every step of 
our Fast Mode approach that we outlined the steps for in our Thesis Approach 
when parsing and deserializing. We use a synthetic 1 GB CSV test data set with a 
chunk size of 2048 bytes, consisting of three uint4 specified columns, each 
comprised of four digits: 

 
Figure 32: Relative performance costs of Fast Mode’s steps on V100 

Reading the entire input data, while counting each chunk’s delimiters using a tree-
reduction and __shfl_down_sync() within a warp, and writing out its results to 
global memory, only accounts for 15.7% of the parsing time. In comparison, time 
spent on deserializing the tapes is only 24.8% but not only requires reading in the 
tapes, which are collectively almost the same size as the input data read during 
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delimiter counting, but also deserialization of three uint4 fields and writing them 
to global memory, which are collectively about one fourth of the input’s data size. 
As expected, due to the complexity of the kernel and the amount of data involved, 
the combined steps for creating the FieldsIndex and tapes accounts for the 
majority of the parsing time with 58.6%. The device-wide prefix-sum calculation of 
the counted delimiters per chunk is just 0.4% and the remaining 0.5% are spent on 
miscellaneous data management operations, e.g. copying individual tape addresses 
to global memory. 

4.2.4 Limitations 

In addition to the above discussed limitations, our prototype contains a number of 
further limitations that we introduced due to time constraints. We document them 
in the following, so that they can be addressed in a production-ready 
implementation. 

Escaping. For the Quoted Mode, we exploit the fact that a character is 
considered quoted whenever the number of preceding quotation marks is uneven. 
However, we do not take non-standard escape characters, i.e. a backslash for 
escaping a quotation mark, into account. 

Missing Fields. For optimization purposes, our algorithm treats record 
delimiters as field delimiters. Although not standard-compliant, this relies on the 
assumption that all rows contain an equal amount of columns, i.e. trailing columns 
that are empty were not trimmed from the output data. 

RDMA_COPY_SPLIT_SIZE. During testing we found some Mellanox kernel 
drivers to throw errors when trying to copy large blocks of data with one 
operation. This would happen when setting streamingBatchSize above 
approximately 528 MB and then trying to read a batch from the remote RDMA 
server. To circumvent this behavior, we added RDMA_COPY_SPLIT_SIZE to 
RDMAClient and hardcoded its value to 500 MB. All copy requests with a size 
larger than that will be automatically split into several smaller RDMA operations. 

MAX_COLUMNS. To quickly look up a tape’s width inside the kernel, we use 
the tapeWidth property inside the KernelOptions in constant memory. Due to time 
constraints, that property is a basic static array of size MAX_COLUMNS. Dynamic 
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arrays need pointers but pointers become invalid when copied from host memory 
to GPU memory, require additional management, and are not available in constant 
memory. We therefore opted for this macro, defined in a global header file. By 
default, its value is 32, limiting the maximum amount of columns in the input data 
to 32 columns. For input data with more columns, this macro needs to be 
increased accordingly. Additionally, tapeWidth’s underlying data type is uint8_t, 
limiting a column’s length of type string to 255 characters. 

Malformed Numbers. For optimization purposes, the deserialization of 
numbers only contains a small number of validity checks. Aside from the dot 
character for decimals, non-digit characters are skipped over during deserialization 
and treated as zeroes that might influence the converted number if they are 
between valid digits. 

Negative Numbers. Deserialization to signed integer data types was skipped 
due to time constraints. Similarly, the FloatColumnType ignores leading dash 
characters. 

Limited CUDA Copy Engines on PCIe. CUDA on desktop-grade GPUs only 
has two copy engines for PCIe, one for host-to-device transfers and one for device-
to-host transfers, i.e. no two operations in the same direction can be performed in 
parallel and need to be queued up. Since operations like cudaMalloc() are 
synchronous by nature and cudaMemset() is internally implemented as a copy 
kernel, operations like these cannot overlap with host-to-device transfers either 
and need to be queued up as well. This introduced limitations of what the parser 
can do on the host side while another WorkStream copies a large chunk of input 
data to the device over PCIe, e.g. the above addressed ThrustMemoryPool to avoid 
a thread stall during parsing. Additionally, this also limits operations non-
TransferringInput WorkStream items can do, particularly data padding and data 
alignment. Any such operations are therefore moved to the TransferringInput 
stage. However, NULLing the leading bytes for parsing after realigning the data 
pointer requires knowing the size of the widow, which is not yet available during 
the TransferringInput stage but would cause a similar thread stall if done in the 
Parsing stage. As a workaround, we therefore deferred this memset() to the kernel 
itself to the very first lane of the first chunk of a batch. 
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Windows-Style Line Endings. While a Unix-style line ending simply consists of 
a single byte, i.e. the newline character \n, Windows-style line endings consist of 
an additional preceding byte, i.e. the carriage return character \r. Since our parser 
treats record delimiters equal to field delimiters using a single byte, CSV data that 
uses these Windows-style line endings will cause the last field’s value to have a 
trailing carriage return character for string column types. Enabling the more 
expensive parseStrings option could be used to remove this trailing \r in such 
situations. Number type fields will simply ignore this character during 
deserialization. 

Tape Width Lookup in Quoted Mode. Since our focus was primarily on 
optimizing the Fast Mode, one particular optimization was left to be done when 
creating the tapes from the FieldsIndex in Quoted Mode. Fields are copied by 
column in this mode, i.e. lanes in a warp access columns in sequence. When 
looking up the tape width for their column to copy the field to the correct offset on 
the tape, each lane accesses the KernelOption’s tapeWidth property, an array of 
column’s tape widths. Since the KernelOptions are located in constant memory 
and every lane accesses a different address simultaneously, this causes 32 serialized 
constant memory accesses instead of one. While the subsequent global memory 
copy to the tape is slow in comparison to the constant memory read latency, it still 
is significant enough to optimize. 

Infinity’s Maximum Resource Usage. The RDMA wrapper library uses 
hardcoded values for the maximum length of the two completion queues during 
their initialization. Unfortunately, they cannot be changed during runtime and are 
both set to 16531, which is the global maximum for completion queue lengths the 
InfiniBand kernel driver allows on our testing machines. This hindered 
CUDAFastCSV from working with RDMA if any other RDMA application was 
already running on either machine. The fields SEND_COMPLETION_QUEUE_LENGTH and 
RECV_COMPLETION_QUEUE_LENGTH are available in the 
infinity::core::Configuration namespace and need to be recompiled with a 
value of, e.g., 2 or be made non-const to allow CUDAFastCSV to change their 
values during startup. 
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5. Evaluation 

In this chapter we evaluate the performance of parsing CSV files on GPUs. First, 
we describe our experiment setup. Then, we give an overview of our CPU and 
GPU baselines. After that, we present and assess our measurement results. We 
divide our measurements into six categories: Implementation Strategies, Tuning 
Parameters, Databases and Parsers, I/O, Quoted Mode, and Hardware Scalability. 
Finally, we discuss our lessons learned. 

5.1 Experiment Setup 

The following sections give an overview of our testing conditions and their 
configuration particulars. 

Hardware 

We used two identical nodes for the majority of our testing, referred to as Node1 
and Node2. A third node was used for NVLink related evaluations, referred to as 
NodeNVLink. 

Node1/2. Each system has a x86-64 based Intel Xeon Gold 5115 CPU (10 cores 
with hyper-threading, 2.4 GHz base clock, 3.2 GHz turbo clock) that supports SSE 
4.2 string and text instructions and is running Ubuntu 16.04 with a total of 94 GB 
of DDR4-2400 memory, installed in a six-channel configuration. Each node has a 
single Nvidia Tesla V100-PCIe GPU with 16 GB of HBM2 memory, that is 
connected via a PCIe 3.0 bus with 16 lanes. The installed Mellanox ConnectX-4 
MT27700 InfiniBand EDR network adapter is RDMA-capable with two ports and 
supports 100 Gbit/s of theoretical bandwidth per port. Both nodes’ InfiniBand 
adapters are interconnected via a Mellanox SB7700 switch with 100 Gbit/s EDR. 

NodeNVLink. This system is an IBM AC922 (8335-GTH) with 2x IBM Power9 
CPUs (each 16 cores with SMT, 2.3 GHz base clock, 3.8 GHz turbo block), running 
Ubuntu 18.04 with a total of 256 GB of DDR4-2666 memory, installed in an eight-
channel configuration. The system uses an NVLink 2.0 interconnect to its 2x 
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Nvidia Tesla V100-SXM2 GPUs with 16 GB of HBM2 memory. For our tests, we 
use only one NUMA node, i.e. a single GPU and CPU with 128 GB host memory. 

Methodology 

We measure and average all benchmarks over ten runs with the help of high-
resolution timers. For GPU-related measurements, we adhered to Nvidia’s 
recommendations when benchmarking CUDA applications [30]. The time for 
initialization of processes, CUDA, or memory, is not included in these 
measurements. All input files are read from the Linux in-memory file system 
tmpfs. 

With the exception of NVLink-related measurements, we note that our 
measurements are stable with a standard error of less than 5% from the mean. 

Datasets 

For our evaluations we use a real-world, a standardized, and a synthetic dataset. 

NYC Yellow Taxi Trips. This dataset contains records of taxi trips in New York 
City for the first quarter of 2019 [31]. It is provided by the City of New York. The 
dataset is split into CSV files for each month. We combined the CSV files for 
January, February, and March into a single CSV file that is 1.9 GB in size with 22.5 
million records. Each record is made up of 18 fields, of which 14 are numerical 
types, with short and consistent record lengths. Because of CUDAFastCSV’s 
limitation to Unix-style line endings (\n), we replaced the Windows-style line 
endings (\r\n) with Unix-style line endings. The last column, 
congestion_surcharge, is empty for most records in the original dataset. Since 
C/C++ does not natively support nullable primitive data types, we replaced these 
empty fields with 0 in our CSV file. Additionally, since C/C++ does not have a 
native data type for date-times, we deserialize the two date-time fields to ISO 8601 
formatted date-time strings, e.g. “2019-01-29 16:25:38”. 

TPC-H Lineitem. The H-variant of the TPC benchmark consists of a suite of 
business oriented ad-hoc queries and concurrent data modifications, specified by 
the Transaction Processing Performance Council [32]. The large volumes of data 
populating the test database have been curated to have broad industry-wide 
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relevance. We use the suite’s generated CSV file for its LINEITEM table from the 
TPC Benchmark H revision 2.18.0 with 1x scaling. The generated CSV file uses the 
pipe-character instead of a comma to separate the fields. It is 719 MB in size with 
over six million records. Each record is made up of 16 fields of various data types 
and string fields of varying lengths. Similarly to the NYC Yellow Taxi dataset, we 
deserialize the three date fields to ISO 8601 formatted date strings. 

int_444. For a more controlled test environment for evaluating individual 
parameters and scaling, we created a synthetic CSV test file. It consists of three 
numeric fields per record, each comprised of four random digits (i.e. 0000-9999) 
that need to be parsed and deserialized to a two byte unsigned integer data type 
(unsigned short). Since our measurements are evaluated in GB/s, this represents a 
balanced middle ground between input size and the total number of fields that 
need to parsed and deserialized. The chosen length is long enough to not fit into a 
compact one byte integer data type but short enough to not make optimal use of 
the two byte data type, while still requiring a significant amount of deserialization 
work and representing a significant output size. Unless otherwise noted, the CSV 
file is 1 GB in size with 70 million records that we deserialize to approximately 400 
MB of output data. 

Databases and Parsers 

We compare CUDAFastCSV to four CPU and two GPU baselines. These consist of 
three databases, two state-of-the-art parsers for CPU and GPU, and a data 
interchange format. SQL schemas of the databases can be found in the Appendix. 

OmniSciDB (v5.1.2). A GPU-accelerated database that utilizes GPU processing 
power to return SQL query results [33]. We bulk-load our TPC-H and NYC Yellow 
Taxi datasets into temporary tables residing in main memory. Column types of the 
table schemas are all marked NOT NULL and chosen as small as viable (e.g. TINYINT). 
For the import, we set the quoted parameter to false to improve processing speed. 
Note, however, while OmniSci is a GPU-accelerated platform, its CSV import is 
entirely executed on the CPU. It utilizes all available CPU cores on the host system 
for this import [34]. For measurements, we note the query processing time 
reported by OmniSciDB. Before benchmarking, we import the data fully once for 
warm-up. On every benchmark run, the table is truncated first.  
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PostgreSQL (v12.2). A widely popular relational database management system 
[35]. We bulk-load our TPC-H and NYC Yellow Taxi datasets into main memory 
residing tables. Since PostgreSQL does not support memory tables, we created an 
additional PostgreSQL table space that is located in the Linux in-memory file 
system tmpfs. Column types of the table schemas are all marked NOT NULL and 
chosen as small as viable and supported (e.g. SMALLINT) and set to fixed lengths 
when possible (e.g. CHAR(10) for dates). For measurements, we note the query 
processing time reported by PostgreSQL. Before benchmarking, we import the 
data fully once for warm-up. On every benchmark run, the table is truncated first. 

HyPer DB (v0.5). Hyper DB is a main-memory-based relational database 
management system, developed by researchers at TU Munich [36]. We bulk-load 
our TPC-H and NYC Yellow Taxi datasets into tables that are in-memory by 
design. Column types of the table schemas are all marked NOT NULL and chosen as 
small as viable and supported (e.g. SMALLINT) and set to fixed lengths when possible 
(e.g. CHAR(10) for dates). For measurements, we note the query processing time 
reported by HyPer. Before benchmarking, we import the data fully once for warm-
up. On every benchmark run, the table is truncated first. Note, however, this 
version of HyPer does not utilize the improved Instant Loading approach by 
Mühlbauer et al. [7] as presented in the Related Work chapter of this thesis. That 
implementation has since been integrated into the commercial analytics software 
Tableau Server by Tableau25, which do not provide an academic license for this 
particular product. 

ParPaRaw. A massively parallel algorithm implementation for parsing 
delimiter-separated data formats on GPUs, presented by Stehle and Jacobsen [37]. 
We use the binaries custom-tailored to our two datasets that were provided to us 
by the authors. Measurements include the time for reading the datasets from RAM 
and copying the parsed data from GPU memory to a pre-allocated and pinned 
memory buffer on the host. The time taken for initializing CUDA and allocating 
and pinning the host buffer is not included in these measurements. The binaries 
were compiled using GCC 8.3.0 and CUDA 10.1 with -O3 optimization flags for 
both. We note that the primary author of ParPaRaw ran the benchmarks on our 
test system and validated our measurements. 

                                                 
25 Tableau. Faster analytics with Hyper. https://www.tableau.com/products/new-features/hyper 
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RAPIDS cuDF (v0.14.0). A GPU library aimed at data engineers and data 
scientists to easily accelerate workflows using CUDA and the Apache Arrow [38] 
columnar memory format [39]. We implemented a test program in C++ that, 
using cuDF, reads the datasets from the Linux in-memory file system tmpfs, parses 
and deserializes them to the Apache Arrow format, and copies results back to the 
host’s main memory. For its configuration, we set the quoting parameter to 
quote_style::NONE to improve processing speed. The field types are configured as 
small as viable and supported (e.g. int16). For every column, the memory area of 
the resulting Apache Arrow data is directly copied from GPU memory to a pre-
allocated and pinned memory buffer on the host. We use the GCC implementation 
of std::chrono::high_resolution_clock to time our results. The time taken for 
initializing CUDA and allocating and pinning the host buffer is not included in 
these measurements. Before benchmarking, we parse and deserialize the data fully 
once for warm-up. The test application was compiled using GCC 8.3.0 and CUDA 
10.1 with -O3 optimization flags for both. It is worth noting that this version 0.14.0 
of cuDF has a completely new and improved CSV parser for its CUDA 
implementation26. 

csvmonkey (v0.1). A vectorized, zero-copy CPU-based CSV parser that utilizes 
SSE 4.2, written in C++ [8]. As of this writing, it leads Ewan Higg’s 
microbenchmark shootout of 24 CSV parsers [40]. csvmonkey uses a single thread 
for parsing and deserialization. We implemented a test program in C++ that reads 
the datasets as memory mapped files from the in-memory file system tmpfs and 
then parses and deserializes all fields. The fields are deserialized to data types as 
small as viable and supported (e.g. unsigned short). For numeric conversions, 
csvmonkey uses the Qi numeric parser implementation for double from Boost’s 
Spirit library27. Accordingly, we extended their implementation to allow 
deserialization to float, (u)int32, and (u)int16. An implementation for 
converting numbers to one byte sized numeric data types is not provided by Qi. 
Every field is directly deserialized into its appropriate address in a pre-allocated 
memory buffer. We use the GCC implementation of the 
std::chrono::high_resolution_clock to time our results. The time taken for 

                                                 
26 csv_gpu.cu https://github.com/rapidsai/cudf/commit/6d3ed596ce30135226f0bf8c5576d5b585262268 
27 Boost C++ Libraries. Spirit Qi Numeric Parsers. 

https://www.boost.org/doc/libs/1_73_0/libs/spirit/doc/html/spirit/qi/reference/numeric.html 
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memory mapping the input file and allocating the result buffer is not included in 
these measurements. Before benchmarking, we parse and deserialize the data fully 
once for warm-up. The test application was compiled using GCC 8.3.0 with -O3 
-msse4.2 optimizations for aggressive inlining and copy elision of return values 
(RVO), which we verified in the assembly code. 

I/O 

In this section, we stream the input data over various I/O sources to compare 
performance against the potentially transfer bound end-to-end parsing from the 
previous section, Databases and Parsers. We stream data with interconnects and 
with InfiniBand using two datasets. In contrast to end-to-end parsing, results are 
not copied back to the host’s main memory. 

On-GPU. The input data already resides in GPU memory. This allows us to 
compare raw parsing and deserialization throughput of CUDAFastCSV for the two 
datasets without being transfer bound. 

PCIe 3.0. The input data resides on the host’s in-memory file system tmpfs. 
CUDAFastCSV streams this input data to the GPU for parsing and deserialization. 
This serves as an upper bound for I/O devices on the host, including NICs and 
SSDs, as they would all be limited by the interconnect’s bandwidth, even if the 
devices themselves were capable of faster transfer rates. We stream the TPC-H 
dataset with a streamingBatchSize of 50 MB and the NYC Yellow Taxi dataset with 
a streamingBatchSize of 100 MB. 

NVLink 2.0. Similar to the PCIe 3.0 setup, the input data resides in the host’s 
main memory and CUDAFastCSV streams this input data to the GPU for parsing 
and deserialization. In comparison to PCIe 3.0 and its practical bandwidth of just 
12 GB/s, however, NVLink 2.0 can transfer with up to 63 GB/s on our 
NodeNVLink system and with a latency of almost half [21]. We stream the TPC-H 
dataset with a streamingBatchSize of 250 MB and the NYC Yellow Taxi dataset with 
a streamingBatchSize of 300 MB. 

RDMA with GPUDirect. A CUDAFastCSV instance on Node1 acts as the 
RDMA file server with the input file completely loaded into pinned host memory 
and registered with the InfiniBand device. The CUDAFastCSV instance on Node2 
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streams the input data directly from Node1 using RDMA and directly into the 
GPU’s memory using GPUDirect. This bypasses the CPU and the host’s main 
memory. We stream the TPC-H dataset with a streamingBatchSize of 75 MB and 
the NYC Yellow Taxi dataset with a streamingBatchSize of 100 MB. We observed 
slow but rising transmission rates on newly established InfiniBand connections. 
We speculate this is due to the network connection’s initial congestion control. To 
mitigate this, we run the benchmark without measurements several times first to 
allow the connection between the two nodes to ramp up its transmission rate to the 
network’s maximum capacity before benchmarking. 

5.2 Results 

In this section we show performance results divided into six categories: 
Implementation Strategies, Tuning Parameters, Databases and Parsers, I/O, 
Quoted Mode, and Hardware Scalability. We assess the results and explain their 
cause. For better comparison of data from all sections, all measured times were 
converted to their throughput value in GB/s with respect to the input’s size. 

5.2.1 Implementation Strategies 

In this section, we circle back to the various challenges with their proposed 
solutions we presented in our Thesis Approach chapter and discuss their 
evaluation. Unless otherwise noted, the input data already resides in GPU memory 
and its deserialized output data is written to GPU memory. 

Parallelization Strategy: Access Patterns 

To analyze the viable access patterns we presented in our thesis approach and 
identify chunk sizes that allow for the most optimal loading and processing, we 
implemented several kernels that each load chunks at different sizes for a synthetic 
1 GB CSV test dataset, consisting of eight columns, each comprised of three 
characters, and present their measurements in Figure 33. To avoid compiler 
optimizations, every kernel counts the number of \n-characters in its chunk. 
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Figure 33: Throughput for chunk size with various access patterns on GTX 1080 Ti 

We can see that simply increasing the chunk size above 128 and processing them in 
a 128 byte sized loop will provide an increase in throughput for every kernel. 

single. Reads single bytes within a warp. As discussed in our Thesis Approach, 
reading single bytes within a warp is a slow strategy that cannot saturate the GPU’s 
memory bandwidth at any chunk size. 

consecutive. The consecutive kernel accesses 128 bytes per loop within a warp, 
with each thread accessing four contiguous bytes. Its maximum throughput is 
comparatively low and is approached quickly. Our analysis showed this is due to 
an increase in cache misses when processing warps in a thread block, causing 
additional latencies. 

strided. The strided kernel accesses 128 bytes per loop within a warp, with each 
thread accessing four bytes in a stride of 32 bytes. Its throughput begins to decrease 
early after a chunk size above 512 bytes. Because its access happens in strides, its 
penalty for an increase in cache misses is lower than of the consecutive kernel. 

simd_strided. Similar to the regular strided kernel, this kernel accesses 128 
bytes per loop within a warp, with each thread accessing four bytes in a stride of 32 
bytes. In contrast, however, the simd kernels use __vcmpeq4(), a CUDA function 
similar to SSE4.2’s intrinsic instruction pcmpestri, with the four bytes as the input 
and 0x0a0a0a0a as a mask (0x0a being the ASCII code for \n) to compare four 
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bytes at once. Like the regular strided kernel, its throughput begins to decrease 
early due to an increase in cache misses. 

simd_consecutive. Like the simd_strided kernel but instead of threads accessing 
four bytes in a strided pattern, they are accessed contiguously. Unlike the 
simd_strided and the regular consecutive kernel, however, it saturates the available 
bandwidth and offers maximum performance. This is because the four bytes are 
loaded with one memory transaction, directly by the __vcmpeq4() function. This 
access pattern does not rely on the cache and simplifies the comparison operation. 

consecutive_forced4b. To circumvent additional cache dependencies, like 
simd_consecutive, we access the four individual bytes by forcefully loading all of the 
four bytes as an int to a register first and then cast it to a char array. With this 
strategy we are able to saturate the GPU’s memory bandwidth at a chunk size of 
just 1024. 

We conclude that simd_consecutive and consecutive_forced4b achieve the best 
performance. The consecutive_forced4b kernel is our chosen strategy for 
CUDAFastCSV for loading and accessing chunks. While simd_consecutive offers 
similar performance, it is at the cost of more complexity, especially for a later 
implementation of succeeding operations. 

Deserialization Strategy: Integer Deserialization Kernels 

We compare the three different approaches discussed in our Thesis Approach 
(Dynamic Parallelism, Grouped Warp Lanes, Columns with Maximum Lengths) 
and identify the fastest deserialization strategy. We implement these approaches as 
kernels that deserialize a synthetic 1 GB CSV test data set using a pre-calculated 
FieldsIndex, consisting of only one column of various sized numbers, and present 
its results in Figure 34. 



65 

 
Figure 34: Comparing integer deserialization kernels on GTX 1080 Ti 

As discussed in our Thesis Approach, the Dynamic Parallelism approach suffers 
from a lack of resources needed to manage pending kernel launches. The grouped 
approach achieves 65 GB/s but does not access the data in an optimal way and 
needs either additional synchronization or atomic operations between threads to 
calculate their sums. Our final approach, using columns with maximum lengths, 
provides a significant improvement and, depending on the input data’s structure, a 
nearly 100% branch efficiency, tested with several specified column lengths. 
Column lengths that are a multiple of four provide comparable performance. 
Because memory access is aligned, with a column length of ten the kernel has to 
continuously account for the misaligned bytes of the field value. 

We conclude that the column-based approach with specifying maximum 
column lengths achieves the best performance. It is our chosen strategy for 
CUDAFastCSV for deserialization. 

Optimizing Deserialization: Transposing to Tapes 

To improve deserialization performance for columns with various data types, we 
introduced deserialization with tapes in our Thesis Approach. Using our 
implemented column-based deserializer, we can now execute a type specific kernel 
for each tape, i.e. each column, and deserialize its values in parallel up until the first 
NULL byte or tapeWidth without the discussed performance penalty of having to 
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deserialize various data types in the input data. We illustrate this in Figure 35, 
which does not take the creation of tapes into account but simply measures the raw 
deserialization performance. 

 
Figure 35: Column-based vs tape-based deserialization performance scaling on GTX 1080 Ti 

5.2.2 Tuning Parameters 

In this section, we evaluate several parameters for performance tuning and 
scalability that we presented in our Thesis Approach chapter. Unless otherwise 
noted, the input data already resides in GPU memory and its deserialized output 
data is written to GPU memory. 

Impact of Block Size 

In CUDAFastCSV, kernels require several GPU resources, including registers and 
shared memory, that are limited on the SM. Developers in CUDA specify a block 
size when launching kernels that, depending on the kernel’s needs and the 
underlying architecture, can help maximize usage of the device’s resources. 
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Figure 36: Impact of parameter blockSize for int_444 on V100 

In Figure 36 the most optimal block sizes are shown to be between 128 and 640. 

The reason for the decreased performance of block sizes smaller than 128 is 
twofold. For a block size of 32 the SM’s occupancy never exceeds 50%. While the 
architecture allows for up to 2048 threads per SM, the SM itself is limited to 32 
thread blocks. A block size of 32 will therefore only ever occupy at most 1024 
threads on the SM at all times. For the other block sizes leading up to the more 
optimal ones, the deserialization kernels are not able to achieve their maximum 
throughput when reading the tapes from global memory. The maximum number 
of blocks per SM, 32, simply does not contain enough threads with these small 
block sizes to effectively hide the memory latency for the deserialization kernels. 

The sudden drop in performance when going from a block size of 640 to 672 is 
due to a lower occupancy caused by a lack of available registers needed to run 
multiple blocks on an SM simultaneously. In particular, the kernel in question uses 
41 registers per thread, which amounts to 1312 registers per warp. CUDA allocates 
registers on a per-warp basis in multiples of 256, however [41], i.e. the kernel’s 
warp actually occupies 1536 instead of just 1312 registers. Given the architecture’s 
limit of 65,536 registers per SM, 42 warps could theoretically fit into an SM’s 
register budget. However, CUDA schedules warps in groups of four [25], i.e. 
reducing the maximum number of warps to 40. A block size of 640 equals 20 
warps, allowing CUDA to execute a second thread block on that SM 
simultaneously, since two of such blocks equal exactly the maximum of 40 warps. 
A block size of 672, however, equals 21 warps, leaving no spare register resources 
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for a second thread block. The performance of the larger block sizes then steadily 
rises again, since they make better use of the available resources until the 
throughput limit is hit at 960. 

We conclude that, unless specified unusually low or high, blockSize does not 
have a large impact on performance when changed from its default value of 128. 

Impact of Chunk Size 

The choice of the chunkSize in CUDAFastCSV determines how much of the input 
data a warp processes. An increasing size requires more SM resources per warp but 
also reduces the overhead associated with scheduling, launching, and processing 
new thread blocks or warps. 

 
Figure 37: Impact of parameter chunkSize for int_444 on V100 

Figure 37 reflects what we previously discussed for access patterns in our 
parallelization strategy for small chunk sizes. The steep drops, e.g. after 1792, stem 
from one less concurrent thread block running on the SM due to a lack of available 
shared memory resources. A slight rise in performance before every drop shows 
the improved resource utilization of the available resources. 

We conclude that the best chunkSize is 1024 bytes. 
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Impact of Input Size 

Given a GPU’s architecture, it can only fully utilize its resources when given 
enough workload. For small CSV files, we would need to use a small chunkSize to 
create enough work in the form of threads that can be scheduled to read and 
process input data to hide memory latencies. As previously shown, however, small 
chunkSize values significantly impact processing performance negatively. So it 
might not make sense to use a GPU based parser in such instances, especially when 
the input data needs to be transferred to and its results back from the GPU. Even 
for small input data that already resides on the GPU, there is still considerable 
overhead from kernel launches and synchronization to account for. 

 
Figure 38: Performance scaling in relation to input size for int_444 on V100 

Figure 38 shows the ramp up of CUDAFastCSV’s performance when given an 
increasingly large input file. While the 1 MB sized file only achieves 4.5 GB/s, the 
throughput already strongly increases with a 10 MB file to 33.6 GB/s and continues 
to rise until it approaches its limit of approximately 90 GB/s. 

We conclude that even with just a 1 MB sized CSV file a case for loading data 
using the GPU instead of the CPU could be made in certain cases, while maximum 
throughput can be approached fairly quickly after just 100 MB. 
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Impact of Streaming Size 

In CUDAFastCSV we can use streaming to begin parsing and deserializing of 
incoming parts of the input data without having to wait for the entire input data to 
be on the GPU first or for the input data to even fit into GPU memory. The input 
data is partitioned into smaller sized chunks, controlled by streamingBatchSize. 
Each chunk is transferred to the GPU, parsed and deserialized, and its results 
transferred back to the host’s main memory. Processing and the transfer of chunks 
in each direction is interleaved. As shown in the previous experiment, Impact of 
Input Size, a small data size cannot utilize the GPU’s processing capabilities to its 
maximum and, for streaming, results in a large amount of synchronizations over 
the interconnect. However, CUDAFastCSV cannot start parsing until the first 
chunk is transferred. So a too large streamingBatchSize might result in overall 
worse performance, due to the additional latency from the transfer of the first 
chunk of the input data and the transfer from the last chunk’s result data. 

 
Figure 39: Impact of parameter streamingBatchSize for int_444 on V100 over PCIe 3.0 

In Figure 39 we indicate PCIe 3.0 as the baseline as it represents the maximum 
possible throughput in our experiment on Node1, regardless of a GPU parser’s 
performance, due to its latencies and maximal throughput of approximately 12 
GB/s. In our results the throughput scales almost linearly with the 
streamingBatchSize up until 10 MB before it hits its maximum of 11 GB/s at 20 
MB. At 500 MB, the penalties of having a too large size over the interconnect begin 
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to show. For comparison, Figure 40 shows the same experiment over NVLink 2.0 
on NodeNVLink. Ramp-up speed is very similar to PCIe 3.0 but keeps rising when 
the limitations of PCIe 3.0 would otherwise set in. Due to NVLink 2.0’s higher 
bandwidth and lower latency, the negative impacts of a too large 
streamingBatchSize already begin to show at 400 MB. In comparison to PCIe 3.0’s 
peak throughput of 11.1 GB/s, with streaming over NVLink 2.0 we achieve a peak 
throughput of 48.3 GB/s. Our implementation is not able to fully utilize the 
interconnect’s available bandwidth due to CUDA’s copy engine limitations 
described in the previous chapter, leading to transfer and processing delays from 
non-overlappable operations, and due to the overhead from data and buffer 
management required for streaming. 

 
Figure 40: Impact of streamingBatchSize for int_444 on V100 over NVLink 2.0 in comparison 

We conclude that PCIe 3.0’s bandwidth is saturated quickly and its best 
streamingBatchSize is already achieved at 20 MB. NVLink 2.0 exposes PCIe 3.0 as a 
bottleneck for end-to-end parsing in comparison. 

Impact of Warp Index Buffer Size 

The warpIndexBufferSize parameter in CUDAFastCSV limits the maximum 
number of found fields in all chunk segments within a warp and is used to reserve 
the kernel’s shared memory space in Fast Mode or, in Quoted Mode, the required 
space in global memory for the FieldsIndex. It can be altered from its default, 2048 
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bytes, to increase parallelism when the underlying data characteristics of the CSV 
input data allow for it. As such, less shared memory resources are allocated per 
thread block, allowing for additional thread blocks to run concurrently on the SM. 

 
Figure 41: Impact of oversized warpIndexBufferSize for int_444 on V100 

Figure 41 illustrates this behavior as the amount of concurrent thread blocks steps 
down whenever the increasing size allocates too many resources. For a chunk size 
of 1024, the smallest viable warpIndexBufferSize for the int_444 dataset is 832. 
Maximum throughput of around 90.9 GB/s is kept up until 1536. The default of 
2048 falls into the 85.6 GB/s range. To accommodate for a worst-case scenario of 
only having empty fields in a 1024 byte chunk in any part of our int_444 data, we 
would need a warpIndexBufferSize of 4096, which reduces our performance to 68.6 
GB/s. Larger sizes reduce performance even further. 

We conclude that the warpIndexBufferSize shows to have a large impact on 
performance, as it is dependent on the underlying structure of the input data. 

5.2.3 Databases and Parsers 

To evaluate end-to-end parsing performance of CUDAFastCSV, we benchmarked 
our approach against several implementations from different categories as 
described in our experiment setup. We use the TPC-H and NYC Yellow Taxi 
dataset, residing in the host’s main memory, and measure the time until all 
deserialized fields are available in the host’s main memory in an accessible and 
either row- or column-oriented data storage format. Since CUDAFastCSV is a 
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GPU-based implementation that heavily relies on the performance of the system’s 
interconnect in this scenario, we include measurements not only over PCIe 3.0 
(Node1) but also over NVLink 2.0 (NodeNVLink). 

NYC Yellow Taxi 

 
Figure 42: End-to-end performance comparison for NYC Yellow Taxi dataset 

The performance numbers reported for parsing and deserializing the 1.9 GB from 
the NYC Yellow Taxi dataset in Figure 42 highlight the strength of CUDAFastCSV, 
which is only limited by the PCIe 3.0’s available bandwidth. This is especially 
noteworthy, as deserializing includes nine floating point numbers and five integers 
out of the 18 total fields. 

The GPU-based implementation, cuDF with its new and updated CSV 
implementation, still achieves just a quarter of the performance of CUDAFastCSV. 
All CPU-based approaches, i.e. PostgreSQL, HyPer DB, OmniSciDB, and 
csvmonkey, are slower by up to three orders of magnitude. CUDAFastCSV over 
NVLink 2.0 more than triples the performance over its PCIe 3.0 variant and is 
approaching I/O performance of DDR4 main memory [17]. 

Only ParPaRaw provides comparable performance to CUDAFastCSV. To 
determine if ParPaRaw is being limited by the interconnect in this instance, we 
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additionally measured its on-GPU throughput for this dataset and compared it to 
our implementation in Figure 43. ParPaRaw achieves 16.2 GB/s on-GPU 
throughput on our system. In comparison, our Quoted Mode measures 25.9 GB/s 
and our Fast Mode even 60 GB/s. Using our early context detection approach, we 
are able to reduce the overall amount of work, as we do not need to track multiple 
DFAs, and are less processing-intensive as a result. 

 
Figure 43: Comparing on-GPU throughput of ParPaRaw to CUDAFastCSV 

TPC-H Lineitem 

 
Figure 44: End-to-end performance comparison for TPC-H’s lineitem dataset 
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For the 719 MB TPC-H dataset, Figure 44 shows CUDAFastCSV to be slightly 
slower when compared to the NYC Yellow Taxi dataset on both, PCIe 3.0 and 
NVLink 2.0. The bottlenecking factor for this dataset is found in the transfer of the 
larger result data back to the host, causing increasingly longer delays between 
streamed chunks. For every 100 MB chunk of TPC-H data transferred to the GPU, 
approximately 118 MB of result data needs to be transferred back to the host, while 
the NYC Yellow Taxi data only needs 93 MB per 100 MB. This causes delays in 
input streaming and during processing, as kernel invocations get hindered by data 
dependencies and synchronization. In the taxi dataset, when the last chunk is fully 
deserialized it has no pending output from preceding chunks waiting in the device-
to-host pipeline. In comparison, the last chunk of the TPC-H dataset still has 
multiple preceding chunks waiting in the pipeline for their transfer. 

RAPIDS cuDF, another GPU-based implementation, shows a similar drop in 
performance of approximately 10%. In contrast, some of the CPU-based 
implementations were able to significantly improve their performance for the 
TPC-H dataset, namely HyPer and csvmonkey, due to the smaller number of 
numeric fields that need to be deserialized. 

Again, CUDAFastCSV over NVLink 2.0 can more than triple its performance in 
comparison to the PCIe 3.0 variant. 

Unfortunately, for this dataset we were not able to get a ParPaRaw binary in 
time. 

5.2.4 I/O 

We present results for CUDAFastCSV with various interconnects and an RDMA 
with GPUDirect approach with our two datasets. In contrast to the previous 
section’s setup, results are not copied back to the host’s main memory but instead 
stored in GPU memory to avoid unrelated bottlenecks in the host’s interconnect. 
These results are in a column-oriented data storage format and accessible for 
potential further processing on the GPU. 
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NYC Yellow Taxi 

 
Figure 45: Interconnect streaming performance comparison for NYC Yellow Taxi dataset 

The throughput for parsing and deserializing the NYC Yellow Taxi dataset when it 
is already in GPU memory is at 60 GB/s and serves as a baseline, representing the 
maximum possible performance an interconnect to the GPU could potentially 
achieve. As seen in the previous section, our implementation over PCIe 3.0 can 
fully saturate the bus with 11.2 GB/s. Again, throughput over NVLink 2.0 more 
than triples and shows the limitations of the PCIe 3.0 system in comparison. Our 
RDMA with GPUDirect approach, streaming the input data from a remote 
machine directly onto GPU memory over the internal PCIe 3.0 bus, shows 9.4 
GB/s. Although InfiniBand’s maximum throughput is 12 GB/s on our system, we 
observe the same overhead from GPUDirect RDMA as previous experiments [42]. 
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TPC-H Lineitem 

 
Figure 46: Interconnect streaming performance comparison for TPC-H’s lineitem data 

As with the NYC Yellow Taxi dataset, the baseline for the TPC-H dataset is 
established by measuring the throughput of the data when it is already in GPU 
memory. The measured 48.5 GB/s represent the maximum possible performance 
an interconnect to the GPU could potentially achieve. Similarly to the taxi dataset, 
PCIe 3.0 is saturated at 11.0 GB/s and NVLink 2.0 performance is almost triple in 
comparison. For the RDMA with GPUDirect approach we achieve similar 
performance at 9.2 GB/s for the TPC-H dataset. Overall, throughput for this 
dataset is slightly lower for the baseline and for every interconnect, due to the 
increased size of the result data and its consequences as described in the previous 
section. 

5.2.5 Quoted Mode 

In our thesis approach, we introduced the Quoted Mode as an alternative parsing 
mode that keeps track of quotation marks to create a context-aware FieldsIndex, 
using early context detection. As the main focus of our work was the default Fast 
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Mode, however, we want to include an illustration of the additional processing 
costs involved and show a comparison between the two modes for our three 
datasets in Figure 47. 

 
Figure 47: Comparison of Fast Mode and Quoted Mode on V100 

For all three datasets, throughput is roughly cut in half. Writing out the large 
FieldsIndex to GPU memory and subsequent stream compaction is especially 
punishing in the NYC Yellow Taxi dataset with many more potential fields per MB 
than the TPC-H or the int_444 dataset. Nevertheless, performance numbers are 
promising and since our main focus was the Fast Mode, there is much more 
optimization left to be done for the Quoted Mode. 

5.2.6 Hardware Scalability 

To compare desktop-grade GPUs with server-grade GPUs and the generational 
leap in hardware advancements and how both could further fare in regards to 
scalability in the future, we include measurements on a desktop-grade Pascal GPU 
from the preceding generation. The GPU is a Nvidia GTX 1080 Ti (GP102) with 11 
GB of GDDR5X memory and a theoretical bandwidth of 450 GB/s. It has 28 SMs, 
each with 128 CUDA cores, totaling 3584 cores with a maximum clock of 1999 
MHz. For comparison, Node1’s GPU is the succeeding Volta generation, a server-
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grade Nvidia Tesla V100 with 16 GB of HBM2 memory and a theoretical 
bandwidth of 835 GB/s. It has 80 SMs, each with 64 CUDA cores, totaling 5120 
cores with a maximum clock of 1380 MHz. While not accounting for any 
performance improvement from IPC or architectural advancements in Volta and 
its cores, the combined clock of all cores is slightly higher on the Pascal GPU at 
hand. Volta’s memory bandwidth, however, is significantly higher. 

 
Figure 48: Performance improvement going from desktop-Pascal to server-Volta 

The performance improvements shown for Volta in Figure 48 are at least 100% 
over Pascal for our three datasets. As expected, our analysis showed a considerable 
chunk of the performance improvement stems from the higher memory 
bandwidth and its efficiency. Further analysis we conducted showed the 
enhancements in instruction throughput and latency account for the other 
significant improvement in performance [22]. 
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5.3 Discussion 

In this section, we discuss the lessons we learned in our evaluation. 

GPUs improve parsing performance. Our measurements show that parsing on 
the GPU improves throughput by 134x for the NYC Yellow Taxi dataset and 73x 
for the TPC-H Lineitem dataset, when compared to the fastest CPU parser. Thus, 
offloading parsing to the GPU can provide significant value for databases. 

Parallelizing context-awareness of quoted data. We show that, using our early 
context detection approach, we are able to parallelize context-awareness in Quoted 
Mode and with 51 GB/s scale performance to rates necessary for fast interconnects. 

Interconnect bandwidth limits performance. In all our measurements, PCIe 
3.0 does not provide sufficient bandwidth to achieve peak throughput. Using 
NVLink 2.0 instead, the throughput increases by 2.8-3.4x. This improvement shifts 
the bottleneck to our pipelining strategy. Removing this limitation would increase 
throughput further by 1.6x. 

Network streaming is feasible. We show that streaming data from the network 
to the GPU is possible and provides comparable performance to loading data from 
the host’s main memory over PCIe 3.0. This strategy provides an interesting 
building block for data streaming frameworks. 

GPUs can efficiently handle complex data format features. Features, such as 
quoting fields, decrease parsing throughput to 43-55% of the non-quoted 
throughput. However, this reduced throughput is still higher than the bandwidth 
provided by PCIe 3.0 and InfiniBand. Thus, the overall impact is no loss in 
performance. Only for faster interconnects would performance tuning have a 
practical impact. 

Desktop-grade GPUs provide good performance per cost. For all our datasets, 
a desktop-grade GPU is sufficient to saturate the PCIe 3.0 interconnect. In contrast 
to a server-grade Nvidia Tesla V100 costing 7000 EUR in 2020, a desktop-grade 
Nvidia GTX 1080 Ti is only 10% of the cost at 700 EUR. Thus, only for NVLink 2.0 
and files that are complex to parse does a server-grade GPU make sense. 
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6. Related Work 

Our work is built upon concepts researched in other areas. In this chapter we 
present an overview of the related research areas that are relevant to the approach 
of this thesis. 

Loading 

As modern in-memory DBMSs can process millions of transactions per second 
[43], the question of how to actually get the data into the system first, to ultimately 
make use of this performance, becomes increasingly important. 

CPU-Limited. Dziedzic et al. [3] evaluated CSV data loading performance of 
multiple modern and popular DBMSs (database management system) along several 
dimensions to understand various software and hardware limitations for such 
workloads. With a variety of hardware configurations and datasets, they provide an 
extensive analysis. They show that modern DBMSs are unable to saturate I/O 
bandwidth. Their evaluation shows that data loading is mostly CPU bound. 

We implement an end-to-end parsing approach to offload these CPU bound 
workloads to the GPU and thereby saturate I/O bandwidth, leaving the host 
system’s interconnect as the new bottleneck. 

RDMA-Enabled. Fent at al. [28] show experimentally, that for modern high-
performance systems, networking has become a performance bottleneck. They 
propose a high-performance communication layer for DBMSs that redesigns how 
data flows in and out of these systems. Among other things, it is based on RDMA 
for intra-datacenter communication. Their results show that with the help of 
InfiniBand RDMA, network bottlenecks for DBMSs can largely be eliminated. 

Given their results, we utilize InfiniBand RDMA and GPUDirect as a data 
loading technique for GPU-based CSV parsing to avoid such network bottlenecks. 
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Vectorization 

Mühlbauer et al. [7] already analyzed the problems of CPU-based CSV parsing and 
deserialization. Modern CPUs try to predict the outcome of if-then conditional 
branches for their pipelined architecture. When parsing CSV input, based on 
character-at-a-time comparisons, these branches can hardly be predicted. They 
observed that, amongst other things, the CPU pipeline needs to be flushed often 
due to constant branch miss penalties from mispredictions when doing so. This 
behavior can not only be observed during parsing but also during deserialization. 
By utilizing SSE 4.2 SIMD instructions for delimiter identification during parsing 
and deserialization, they reduced the number of control flow branches to avoid 
these pipeline flushes. 

We adapt SSE 4.2 string specific SIMD instructions to GPU warp-level 
primitives and CUDA’s Math API SIMD intrinsics. We analyze their viability for 
CSV parsing and compare their performance to alternative solutions on the GPU. 

Parallelization 

An inherent challenge of parsing the CSV data format in parallel is its sequential 
text stream of data, separated by delimiters to represent rows and columns, and 
quoting without losing the correct context of found delimiter characters. 

Instant Loading. Mühlbauer et al. [7] present an approach to parallelize CSV 
parsing by splitting the data into equally sized chunks. To identify the ideal chunk 
size, they concluded a high dependency on the CPU’s L3 cache size and number of 
hardware threads. Their approach for Instant Loading allows scalable bulk loading 
of CSV data at wire speeds on just a single node. We classify their approach as early 
context detection. However, when context-awareness is needed, their approach 
requires a serialized pass over the input data for context detection, which is 
inefficient. 

We adapt chunking as a parallelization strategy for our approach and analyze its 
most efficient memory access patterns in regards to threads and multi-level caches 
on the GPU. In contrast to their serialized approach on context-awareness, we also 
parallelize early context detection. 



83 

ParPaRaw. In ParPaRaw [37], a massively parallel algorithm for parsing 
delimiter-separated data formats on GPUs is presented. When using 
aforementioned chunking to parallelize parsing on, the parsing thread is not aware 
of the actual parsing context of its chunk. A record or value delimiter might be an 
actual delimiter or just plain text because of enclosing characters (e.g. double-
quotes) or escape characters that are in a preceding chunk. ParPaRaw’s main focus 
was to create a solution that takes the chunk’s parsing context into account without 
the need for any initial sequential pass over the data or the need to wait for all 
preceding threads to finish first, allowing for true massive scalability. For this, they 
exploit the fact that there are only a few possible contexts to consider while 
parsing. A DFA (deterministic finite automaton) keeps track of the thread’s current 
context while reading characters. However, instead of just one DFA, each thread 
instantiates one DFA for every possible starting state (a similar concept can be 
observed in work done by Ge et al. [44] and by Döhmen et al. [45]). While reading 
delimiters, these DFAs will then transition accordingly until the thread reaches the 
end of the chunk where the DFAs’ final state will then be saved to a vector. The 
composite of these vectors allow the algorithm to deduce the correct starting state 
of every thread which then can correctly interpret its chunk’s symbols in a 
subsequent step. We classify their approach as late context detection. 

Inferring the chunks’ parsing contexts requires additional memory for each 
DFA and global synchronization between thread blocks. Although late context 
detection scales to many threads, tracking multiple DFAs incurs more work overall. 
As we reduce the amount of work, ParPaRaw is more processing-intensive than 
our approach. While their model shows that it can saturate PCIe 3.0’s bandwidth 
on some inputs, due to the DFA simulations our evaluation shows it cannot 
saturate the bandwidth of faster interconnects, such as NVLink 2.0. The 
performance of data loaded from I/O devices, such as NICs, is also not considered 
in ParPaRaw. With the rise in bandwidth saturation using GPU parsing, shown for 
CUDAFastCSV and ParPaRaw, loading the data becomes increasingly important 
to not become the new bottleneck. 
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Other Data Formats 

Current research on how to improve parsing performance is not limited to the 
CSV data format. 

Langdale and Lemire [46] implemented a CPU-based state-of-the-art JSON 
parser, simdjson, in their research that makes heavy use of SIMD instructions. 

With Mison, Li et al. [47] deviate from the traditional approach of parsing JSON 
using finite state machines. Instead, projection and filter operators are integrated 
into the parser itself, which uses previously seen patterns in the dataset to 
speculatively predict logical locations of queried fields. 

Xie et al. introduce FishStore [48], a storage layer that combines a generic data 
parser with a hash-based primary subset index and a user-defined function to 
dynamically register a subset of the parsed data. They find this subset hashing to be 
a powerful primitive that supports a broad range of analytical queries on data that 
becomes immediately available during parsing. 
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7. Conclusion 

In this chapter, we conclude our work with a summary of the methods and results 
of our thesis. We follow up by giving an overview of potential future work. 

7.1 Summary 

This thesis has shown the feasibility and potential of loading CSV data using the 
GPU for either in-memory data processing or for offloading this CPU-bound task 
using end-to-end streaming to either a GPU in the host system or to a GPU in a 
remote network host using RDMA and GPUDirect. 

We analyzed different implementation strategies for parsing CSV data in 
parallel on GPUs and introduced early context detection. We adapted chunking 
from CPU-based related work. We compared memory access patterns for their 
efficiency. We implemented several deserialization models and, using tapes, 
presented a solution to efficiently deserialize CSV fields in parallel. 

In this thesis we introduced CUDAFastCSV, our implementation for a GPU-
based CSV parser. With its ability for end-to-end parsing, we demonstrated an 
approach for CSV loading over the GPU to saturate I/O bandwidth and hide 
latency from data transfers. CUDAFastCSV’s implementation to efficiently load 
data onto the GPU from network devices using RDMA and GPUDirect was also 
presented. 

We evaluated multiple CSV implementations on the CPU and GPU and 
compared different ways and interconnects for how to load CSV data onto the 
GPU. We underlined the need for faster interconnects with performance numbers 
of on-GPU parsing of up to 100 GB/s. We showed how parameters of 
CUDAFastCSV can impact performance and demonstrated its scalability in 
regards to input size, while still being a viable alternative for files as small as 1 MB. 
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7.2 Future Work 

In addition to the limitations shown in chapter 4.2.4 that should be addressed in 
potential future work, we discuss perspectives to improve our approach. 

Multi-GPU. Systems with multiple GPUs and CPUs are becoming more 
common. In a system with multiple GPUs, each GPU could be used to parse and 
deserialize streamed batches during end-to-end parsing. This is especially useful on 
NVLink 2.0 systems with multiple links, as a PCIe 3.0 system is already 
bottlenecking the process with just a single GPU. While performance would not 
proportionally scale with additional GPUs because of the dependency on the 
widow from the preceding batch, we still expect a significant increase in 
performance. 

Out-of-Order Parser Scheduling. A major performance bottleneck in end-to-
end parsing are operations that were scheduled in another stream and block the 
bus. For instance, transferring large results from device to host can block more 
important copy operations in the parsing stream needed for further processing, 
ultimately decreasing performance. CUDA-calls are scheduled on a first-in-first-
out basis, regardless of the issuing stream. Adding a Heap- or Priority Queue-like 
data structure that can hold CUDA-operations before they are actually passed on 
to the CUDA runtime, could allow for parsing related operations to be executed 
sooner and improve overall performance. 

Quoted Mode. Since our focus for this work was mainly on the Fast Mode, most 
of our optimization efforts went into it as well. The Quoted Mode still has lots of 
room for performance improvement. Additionally, support for detecting escape 
characters would allow for parsing even complex text-filled CSV files. A versatile 
first approach would be to check for an immediate escape character before 
counting an encountered quotation mark as such. 

Filtering. Support for custom filtering during loading would not only decrease 
the amount of unnecessarily large data transfers but also improve overall 
performance. Given the architecture in our work, filtering could be added during 
the deserialization step to determine if the field, and consequently the entire row, 
should be written to the result buffer. 
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Hiding Pipeline Latency. One of the most punishing effects in end-to-end 
parsing is the delay of the initial chunk of data that is transferred to the GPU. The 
actual parsing does not start until the first chunk is fully transferred, so keeping the 
streamingBatchSize small will reduce this latency. However, small batch sizes do 
not fully utilize the GPU resources, reducing overall performance. An alternative 
would be to start with a small batch size to reduce the initial latency and then 
automatically ramp-up the batch size to streamingBatchSize for the subsequent 
batches. 

Automatic Parameter Adjustments. In the current implementation, the user 
has to specify the tapeWidths in the form of column lengths, indicating a column’s 
maximum field length. Alternatively, CUDAFastCSV could keep track of the 
currently longest field for each column during the Indexing Fields step. 
Additionally, the importance of an optimal warpIndexBufferSize for performance 
was shown. However, when over-optimistically choosing a too small value for a 
given dataset, the current implementation cannot execute and will instead 
gracefully exit with a warning and suggestion for an alternative value. The simple 
option to automatically restart the parser with the now known smallest possible 
value for warpIndexBufferSize, can improve the user experience tremendously. 

Unicode. Due to time constraints, our implementation focused on simply 
supporting ASCII encoded content. However, by 2009, UTF-8 has already 
established itself as the main encoding on the web and as of 2020 is used by over 
95% of websites, underlining its importance and need for support in 
CUDAFastCSV [49] [50]. 
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Appendix 

Source Code and Software 

The source code of the software of this thesis, CUDAFastCSV, is available on 
GitHub: https://github.com/alxkum/CUDAFastCSV 

SQL Schemas 

OmniSci: 
CREATE TEMPORARY TABLE omnisci_taxi( 

 VendorID TINYINT NOT NULL, 

 tpep_pickup_datetime CHAR(19) NOT NULL, 

 tpep_dropoff_datetime CHAR(19) NOT NULL, 

 passenger_count TINYINT NOT NULL, 

 trip_distance FLOAT NOT NULL, 

 RatecodeID TINYINT NOT NULL, 

 store_and_fwd_flag CHAR(1) NOT NULL, 

 PULocationID SMALLINT NOT NULL, 

 DOLocationID SMALLINT NOT NULL, 

 payment_type CHAR(1) NOT NULL, 

 fare_amount FLOAT NOT NULL, 

 extra FLOAT NOT NULL, 

 mta_tax FLOAT NOT NULL, 

 tip_amount FLOAT NOT NULL, 

 tolls_amount FLOAT NOT NULL, 

 improvement_surcharge FLOAT NOT NULL, 

 total_amount FLOAT NOT NULL, 

 congestion_surcharge FLOAT NOT NULL 

); 
 
 

CREATE TEMPORARY TABLE omnisci_tpch_lineitem( 

 orderkey INT NOT NULL, 

 partkey INT NOT NULL, 

 suppkey INT NOT NULL, 

 linenumber TINYINT NOT NULL, 

 quantity TINYINT NOT NULL, 

 extendedprice FLOAT NOT NULL, 

 discount FLOAT NOT NULL, 

 tax FLOAT NOT NULL, 

 returnflag TEXT NOT NULL ENCODING DICT(8), 

 linestatus TEXT NOT NULL ENCODING DICT(8), 
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 shipdate TEXT NOT NULL, 

 commitdate TEXT NOT NULL, 

 receiptdate TEXT NOT NULL, 

 shipinstruct TEXT NOT NULL, 

 shipmode TEXT NOT NULL, 

 comment TEXT NOT NULL 

); 

PostgreSQL: 
CREATE TABLE postgresql_taxi( 

 VendorID SMALLINT NOT NULL, 

 tpep_pickup_datetime CHAR(19) NOT NULL, 

 tpep_dropoff_datetime CHAR(19) NOT NULL, 

 passenger_count SMALLINT NOT NULL, 

 trip_distance FLOAT NOT NULL, 

 RatecodeID SMALLINT NOT NULL, 

 store_and_fwd_flag CHAR(1) NOT NULL, 

 PULocationID SMALLINT NOT NULL, 

 DOLocationID SMALLINT NOT NULL, 

 payment_type CHAR(1) NOT NULL, 

 fare_amount FLOAT NOT NULL, 

 extra FLOAT NOT NULL, 

 mta_tax FLOAT NOT NULL, 

 tip_amount FLOAT NOT NULL, 

 tolls_amount FLOAT NOT NULL, 

 improvement_surcharge FLOAT NOT NULL, 

 total_amount FLOAT NOT NULL, 

 congestion_surcharge FLOAT NOT NULL 

) TABLESPACE alxkumbenchmarkspace; 
 
 

CREATE TABLE postgresql_tpch_lineitem( 

 orderkey INT NOT NULL, 

 partkey INT NOT NULL, 

 suppkey INT NOT NULL, 

 linenumber SMALLINT NOT NULL, 

 quantity SMALLINT NOT NULL, 

 extendedprice FLOAT NOT NULL, 

 discount FLOAT NOT NULL, 

 tax FLOAT NOT NULL, 

 returnflag CHAR(1) NOT NULL, 

 linestatus CHAR(1) NOT NULL, 

 shipdate CHAR(10) NOT NULL, 

 commitdate CHAR(10) NOT NULL, 

 receiptdate CHAR(10) NOT NULL, 

 shipinstruct TEXT NOT NULL, 
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 shipmode TEXT NOT NULL, 

 comment TEXT NOT NULL 

) TABLESPACE alxkumbenchmarkspace; 

HyPer DB: 
CREATE TABLE hyper_taxi( 

 VendorID SMALLINT NOT NULL, 

 tpep_pickup_datetime CHAR(19) NOT NULL, 

 tpep_dropoff_datetime CHAR(19) NOT NULL, 

 passenger_count SMALLINT NOT NULL, 

 trip_distance FLOAT NOT NULL, 

 RatecodeID SMALLINT NOT NULL, 

 store_and_fwd_flag CHAR(1) NOT NULL, 

 PULocationID SMALLINT NOT NULL, 

 DOLocationID SMALLINT NOT NULL, 

 payment_type CHAR(1) NOT NULL, 

 fare_amount FLOAT NOT NULL, 

 extra FLOAT NOT NULL, 

 mta_tax FLOAT NOT NULL, 

 tip_amount FLOAT NOT NULL, 

 tolls_amount FLOAT NOT NULL, 

 improvement_surcharge FLOAT NOT NULL, 

 total_amount FLOAT NOT NULL, 

 congestion_surcharge FLOAT NOT NULL 

); 
 
 

CREATE TABLE hyper_tpch_lineitem( 

 orderkey INT NOT NULL, 

 partkey INT NOT NULL, 

 suppkey INT NOT NULL, 

 linenumber SMALLINT NOT NULL, 

 quantity SMALLINT NOT NULL, 

 extendedprice FLOAT NOT NULL, 

 discount FLOAT NOT NULL, 

 tax FLOAT NOT NULL, 

 returnflag CHAR(1) NOT NULL, 

 linestatus CHAR(1) NOT NULL, 

 shipdate CHAR(10) NOT NULL, 

 commitdate CHAR(10) NOT NULL, 

 receiptdate CHAR(10) NOT NULL, 

 shipinstruct TEXT NOT NULL, 

 shipmode TEXT NOT NULL, 

 comment TEXT NOT NULL 

); 
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