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ABSTRACT
The Internet of Things (IoT) combines large data centers with (mo-
bile, networked) edge devices that are constrained both in compute
power and energy budget. Modern edge devices contribute to query
processing by leveraging accelerated processing units with multi-
core CPUs or GPUs. Therefore, data processing in the IoT presents
the challenges of 1) minimizing the energy consumed while sus-
taining a given query throughput, and 2) processing increasingly
complex queries within a given energy budget.
In this paper, we investigate how modern edge devices can re-

duce the energy requirements of stream joins as a common data
processing operation. We explore three dimensions to save energy:
workload characteristics, computational efficiency, and heteroge-
neous hardware. Based on our findings, we propose the ecoJoin that
1) reduces energy consumption by 81% at a given join throughput,
and 2) enables scaling the throughput by two orders-of-magnitude
within a given energy budget.
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1 INTRODUCTION
The Internet of Things (IoT) [3] enables a wide range of new ap-
plication scenarios. These scenarios cover different domains such
as biosensors for medical patients [2, 30], concrete structure mon-
itoring [4], or smart grid management [10, 11] and perform com-
plex analytical workloads, e.g., joins and aggregations, on geo-
graphically distributed data streams [13]. To manage such data
streams efficiently, a new class of IoT data management systems
has emerged [6, 35, 54]. These systems offload data processing
tasks to edge devices, which are located close to the data sources,
e.g., sensors. Edge devices gather data from the sensors, perform
preprocessing, and send intermediate results to the cloud. How-
ever, edge devices are usually battery-powered and thus energy-
constrained [9, 13, 44, 53]. As a result, it is crucial to take energy
consumption into account. To this end, an energy-aware IoT data
management system must address the following three challenges:
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Figure 1: EcoJoin combines three energy optimizations.

C1:WorkloadCharacteristics.Modern processors balance per-
formance and power consumption. They sleep in a low power state
to save energy. When there is work to do, processors race-to-idle by
ramping up their clock speed, process the data quickly, and return
to the idle state. However, predicting the optimal time point to
switch states and set clock frequency is difficult. Consequently, an
energy-aware IoT data management system must take workload
characteristics into account to dynamically adjust power states.

C2: Computational efficiency. Due to the race-to-idle para-
digm, high-throughput directly translates into energy-efficiency.
For relational databases, research proposed a variety of energy-
efficient operator implementations [14–16, 22, 24, 39, 42, 48]. In
contrast, the energy-efficiency of stream processing workloads has
not been addressed yet. In particular, streaming queries inherently
have different semantics compared to relational workloads, and op-
timize latency in addition to throughput. Consequently, an energy-
aware IoT data management system should revisit the design and
implementations of common operators.

C3:HeterogeneousHardware.Modern edge devices are highly
integrated System-on-a-Chip circuits (SoC) [32, 41, 50]. They offer
a diverse set of heterogeneous computational resources with dif-
ferent energy and performance profiles, e.g., multi-core CPUs and
GPUs. Current stream processing systems are usually optimized
for general-purpose hardware, e.g., they use a JVM to abstract from
hardware details [7]. As a result, they cannot fully exploit the hard-
ware resources of edge devices [54]. Consequently, an energy-aware
IoT data management system should take advantage of the available
heterogeneous hardware resources of modern edge devices.
In this paper, we investigate these challenges for an energy-

aware IoT data management system. We focus on stream joins,
as joins are a commonly-used, computation-intensive operator in
IoT workloads [55]. In particular, we propose ecoJoin1, a novel
energy-efficient stream join approach.

2 ENERGY-EFFICIENT STREAM JOIN
In this section, we present ecoJoin, an energy-efficient stream join.
EcoJoin combines three techniques to reduce energy consumption,
shown in Figure 1: ➀ Exploiting workload characteristics, ➁ reduc-
ing algorithmic complexity, and ➂ utilizing hardware resources.

1https://github.com/TU-Berlin-DIMA/ecoJoin
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Figure 2: The hash partitioning scheme of ecoJoin.

2.1 ExploitingWorkload Characteristics
Tuple-wise processing prevents the processor from entering low
power states, because the tuple stream generates a steady load on
the processor over a long period of time. With ecoJoin, we propose
to optimize power consumption by racing the join to idle in a two-
step approach. In the first step, we batch tuples to split processing
into idle and race phases. The idle phase enables the processor to
enter a low power state to save energy. Larger batch sizes lead to
longer idle phases and to higher join throughput due to cache local-
ity. However, large batch sizes increase processing latency. To avoid
high processing latencies, ecoJoin adaptively adjusts batch sizes
based on stream input rates and the latency tolerances provided by
the user. In a second step, we adjust the processor’s clock rate to
conserve energy. Our ecoJoin determines the clock rate based on
the processing phase and the input rate. It sets the idle frequency
to the lowest value supported by the processor and the race fre-
quency to the optimal clock rate. We obtain the optimal clock rate
by pre-computing it based on the observation that the join is a
memory-bounded operator [18, 38]. Thus, processors achieve their
peak join throughput without boosting to the maximum frequency.

2.2 Increasing Computational Efficiency
State-of-the-art stream joins are based on nested loops because the
time interval is typically a range predicate. Furthermore, nested
loop joins are easily parallelizable for multi-threaded execution.
However, they do not scale to fast input rates on large windows,
due to their low computational efficiency.

EcoJoin improves computational efficiency by following a three-
phase approach, shown in Figure 2. We describe the steps for the
first stream. The second stream follows the same process with the
streams mirrored. After presenting the core algorithm, we show
how a multi-core processor can run the phases in parallel.

(1) Build phase. The build starts when a batch of tuples is ready
to be processed. Thus, we assume that tuples arrive in an input
queue, e.g., via the network, while the processor is idle. When the
join starts, it first inserts all tuples of the batch into a hash table,
which is partitioned on the tuple’s key value. Because the second
stream follows the same procedure, ecoJoin maintains two hash
tables. Within a hash table, each bucket contains a buffer with tu-
ples from the current join interval. To insert tuples into an interval
buffer, the ecoJoin increments a fill-state counter that points to the
next free slot.

(2) Probe phase. The same batch is probed with tuples in the
second stream’s hash table. For each tuple in the batch, the join
looks up the bucket with the corresponding key. If the bucket exists,
the join evaluates the join predicate for each tuple in the bucket.
The predicate matches tuples by key equivalence and by the time in-
terval. If they match, ecoJoin emits matching tuples into a buffered
result stream. To allocate a slot, the join increments the result
buffer’s fill-state counter.

(3)Cleanupphase.After the probe is complete, the join garbage-
collects invalid tuples in bulk. Invalid tuples are tuples that have
exceeded the range of the last observed time interval — they will
not match any further tuples. Invalid tuples are removed by iterat-
ing through the bucket from both ends, and replacing each invalid
tuple in the front with a valid tuple from the back. As a full scan of
the hash table is expensive and invalidates only one batch of tuples,
ecoJoin tries to reduce the number of garbage collection passes. To
this end, ecoJoin counts the number of invalid tuples that it encoun-
ters per hash table bucket in the probe phase. If a bucket exceeds
a specified threshold of invalid tuples, the join marks the bucket in
a bitmap. Then, in the cleanup phase, the garbage collector passes
only over the marked buckets.
After every algorithm cycle, the join switches the streams and

thus processes batches from both streams.
Parallelization. To speed-up the join, ecoJoin parallelizes all

three phases. To this end, ecoJoin evenly distributes the tuple batch
over all cores. Each core independently runs build and probe phases.
Within those phases, cores modify the fill-state counters with
atomic increment instructions. Before proceeding to the cleanup
phase, all cores wait on a global barrier until the probe phase is
complete. In the cleanup phase, ecoJoin assigns each bucket to
a core. In contrast to the other phases, the cleanup requires no
synchronization among the cores. Then, the cores again wait on
a barrier before starting the next batch.

2.3 Exploiting Heterogeneous Processors
Modern edge devices feature processors that integrate GPUs. We
tune our implementation to run efficiently on CPUs and on GPUs.
This enables us to switch to the most energy-efficient processor,
depending on the available hardware and the given workload. We
describe how our ecoJoin takes advantage of the integrated GPU.

Overview. In our design, the CPU orchestrates the GPU’s exe-
cution, in three steps. First, the CPU receives the input data and
batches the tuples. When a batch is ready, the CPU sets the GPU
to its race frequency, and launches a GPU kernel that performs the
build and probe phases. The GPU performs coalesced accesses to
load the tuples from memory. After the build and probe are com-
plete, the CPU checks if any buffer is marked for cleaning. If yes,
the CPU launches the cleanup kernel on the GPU. After that, the
CPU sets the GPU to its idle frequency and waits for the next batch.

Memory Zones. The integrated GPU provides direct access to
main-memory [34], albeit with restrictions. The CPU and the GPU
are not cache-coherent on current edge devices [5, 33], as cache-co-
herence increases hardware complexity [37]. Instead, main-memory
is segmented into three zones [34]: CPU-only memory, zero-copy
memory, and GPU-only memory. Each zone has different access
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Figure 3: Power consumption of stream join variants.

characteristics. The GPU cannot directly access CPU-only mem-
ory. Zero-copy memory is directly accessible by both processors,
but only with reduced bandwidth for the GPU. Finally, GPU-only
memory provides the full main-memory bandwidth to the GPU,
but cannot be directly accessed by the CPU.
As we assume that the streams are ingested via the network,

the join accesses the input and result queues in zero-copy mem-
ory. Thus, we avoid copying data between main-memory zones. In
contrast, we store the hash table in GPU-only memory, to take full
advantage of the memory bandwidth.

3 EVALUATION
In this section, we conduct a set of experiments to evaluate our
ecoJoin in terms of power consumption, throughput and latency.
First, we introduce our experimental setup (see Section 3.1). After
that, we present and discuss our results (see Section 3.2).

3.1 Experimental Setup
In the following, we describe our hardware and software setup, the
workload characteristic, and the measurement methodology.

Hardware and Software. We conduct all experiments on an
NVIDIA Jetson Nano as a representative IoT edge device. It includes
a quad-core ARM A57 at 1.43GHz, a 128-core NVIDIA Maxwell
GPU at 921MHz, and 4GB RAM. The system runs Ubuntu 18.04.
Furthermore, we use GCC 7.4.0 and CUDA 10.0 for compilation.

Workload. We join two streams R: (int X , float Y ) and S : (int A,
float B) on the join predicate R.X =S .A. We use synthetically gen-
erated data. The keys follow a uniform distribution between 0 and
INT_MAX. Tuples arrive with an symmetric input rate and are
processed in a fixed window size of 10 seconds. We use a hash
bucket size of 64 across all experiments.

MeasurementMethodology. In general, we conduct all exper-
iments over a runtime of 2 minutes. We define throughput as the
highest input rate for which all tuples could be processed in the
given runtime. We define latency as the time difference between
the moment the younger tuple arrives and the moment its join pair
is emitted. For energy profiling, we use an ARM Energy Probe [1]
to measure power consumption in real-time. We direct the current
through a shunt resistor with 0.1Ω and measure it at a sample rate
of 2kHz. For the Jetson Nano, we measure an idle power consump-
tion of 1.03W. Across all experiments, we denote the average power
consumption over the measured time frame as Power [W ].

3.2 Experiments
Our evaluation consists of three experiments. First, we compare
throughput and energy consumption to state-of-the-art stream join
algorithms (see Section 3.2.1). Second, we discuss the impact of
batching and frequency scaling on the energy consumption of our
ecoJoin (see Section 3.2.2). Third, we investigate the impact of adap-
tive batching on energy consumption and latency (see Section 3.2.3).

3.2.1 StreamJoinVariants. We compare the energy-efficiency among
two variants of our ecoJoin and three baselines. As representative
state-of-the-art stream join algorithms, we consider the Handshake
Join (CPU) [45] and the HELLS Join (GPU/CPU Co-processing) [21].
To this end, we ported the Handshake Join to ARM, disabled SIMD,
and adjust its join predicate. We reimplemented the HELLS Join in
CUDA and extended it to support our adaptive batching technique.
For our ecoJoin, we conduct the experiment with a CPU and GPU
version. Additionally, we evaluate a naive nested loop join algo-
rithm to assess the impact of the hash-based processing strategy
of our ecoJoin. Across all experiments, we vary the input rate from
102 to 106 tuples/s, leading to a join selectivity up to 0.9%.

Results. Figure 3 shows the throughput and power consumption
for different ingestion rates across the individual stream join vari-
ants. In general, we observe that the maximum achievable through-
put varies significantly across the individual stream join algorithms.
The nested loop variant achieves the lowest throughput of 2K tu-
ples/s. Both HELLS Join and Handshake Join achieve a similar
throughput of around 4K tuples/s. In contrast, our hash-based eco-
Join achieves a significantly higher throughput of up to 1M tuples/s
on both the CPU and iGPU.
Additionally, we observe that GPU-based HELLS Join outper-

forms the CPU-based NL Join. This indicates a performance advan-
tage of the iGPU for nested-loop-based join. In contrast, our ecoJoin
reaches the same throughput on both CPU and iGPU. In terms of
energy-efficiency, we observe that overall the Handshake Join has
a high power consumption of over 5.5W, even for low input rates.
This indicates that the Handshake Join is optimized for high perfor-
mance instead of energy-efficiency. All other implementations scale
gracefully with the rising workload and reach idle power consump-
tion for low input rates. In comparison to baselines, we observe that
our ecoJoin reduces power consumption significantly, up to 81%
compared to Handshake Join and 65% compared to HELLS Join.

Summary. Overall, ecoJoin outperforms state-of-the-art algo-
rithms in terms of throughput and energy consumption due to its
higher computational efficiency.

3.2.2 Batching and Frequency Scaling. In this experiment, we study
the impact of adaptive batching and frequency scaling (see Sec-
tion 2.1). We measure three variants of our CPU-based ecoJoin. FB
uses a fixed batch size of 1024 tuples, AB adapts the batch size to
the input rate, and AB+FS uses adaptive batching in combination
with fine-grained frequency scaling. Furthermore, we depict the idle
power and the max power consumption2. Across the experiment,
we vary the input rate from 102 to 106 tuples/s.

2idle power = power consumption without any workload; max power = power
consumption if the CPU uses always the highest clock frequency.
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Figure 5: Impact of batch size
as power-latency trade-off.

Results. Figure 4 shows the power consumption for increasing
ingestion rates across all three variants. Overall, fixed batching (FB)
achieves the lowest throughput with 0.5M tuples/s. In contrast, both
adaptive batching-based methods (AB and AB+FS) achieve up to 1M
tuples/s. Additionally, we observe that adaptive batching reduces
the power consumption across all ingestion rates by up to 28%
compared to FB. Furthermore, we see that for high ingestion rates,
frequency scaling (AB+FS) further reduces the power consumption
by up to 20%. As a result, adaptive batching and frequency scaling
reduce the power consumption of our ecoJoin by over 1W.

Summary.We conclude that adaptive batching and frequency
scaling significantly improves the energy-efficiency.

3.2.3 Energy-Latency Trade-Off. In this experiment, we investigate
the impact of the batch size on power consumption and latency. To
this end, we use a fixed ingestion rate of 10k tuples per second and
vary the batch size within the range of 10 and 100k tuples.

Results. In Figure 5, we observe that latency and power con-
sumption are inversely proportional. Thus, with increasing batch
sizes, the latency increases from 1.28ms up to 1.59s. At the same
time, the power consumption decreases from 4.93W to 1.46W. Fur-
thermore, batches of 10k tuple are a crossover point below which
latency is less than 100ms, and above which power consumption
nearly stops to decrease. As a result, a batch size of 10k tuples is
a good trade-off between power consumption and latency.

Summary. In sum, a large batch size reduces power consumption
but increases latency. However, there is a sweet-spot at which power
consumption is close to the minimum while latency remains low.

3.3 Discussion
Our experiments have studied the processing performance and
energy-efficiency of our ecoJoin. Our analysis has shown that eco-
Join outperforms state-of-the-art stream join algorithms signifi-
cantly in throughput and power consumption. Furthermore, we
have shown that adaptive batching and frequency scaling improve
energy-efficiency. As a result, we argue that energy-aware data
processing approaches consider workload characteristics, compu-
tational efficiency, and heterogeneous hardware to achieve high
energy-efficiency.

4 RELATEDWORK
Our energy-efficient ecoJoin combines research from the areas of
Energy-Aware Data Management Systems and Efficient Stream Join
Processing. In the following, we categorize related work accordingly.

Energy-Aware DataManagement. Energy awareness of data
management systems has been an important area of research over
the last years [12, 15, 24, 28, 47, 51]. Based on initial experiments,
Harizopoulos et al. [15] formulated the vision for energy-aware
databases management systems. Tsirogiannis et al. [47], evaluated
different database configurations and argued that energy-efficiency
always correlates with processing efficiency. Following these find-
ings, we proposed our ecoJoin as an energy-efficient stream join.
Our work reveals that energy-efficiency is an important design as-
pect for data processing algorithms on edge devices. Similar to Götz
et al. [12] and Kissinger et al. [24] our ecoJoin applies race-to-idle
to stream processing workloads. Compared to relational workloads,
stream processing workloads perform long-running queries over
unbounded data streams, directly on the battery-powered edge de-
vices. As a result, even small energy savings would accumulate to
longer battery life-times and thus longer operation times.
Further research utilized heterogeneous hardware to improve

the energy-efficiency of data processing workloads, e.g., by using
clusters of low-power SoCs [27, 29, 42], by investigating energy-
optimized CPU architectures [49], or by leveraging SoCs with in-
tegrated GPUs [8]. We follow this line of research and leverage a
heterogeneous SoC to investigate the energy-efficiency trade-off
between CPUs and GPUs for stream processing in detail.

Efficient Stream Join Processing. Joining data streams has
been extensively studied over the last years. Research has been
conducted on stream joins in distrusted systems [17, 20], index
structures for state materialization [23, 43, 46], and efficient utiliza-
tion of modern hardware [21, 25, 26, 31, 36, 40, 55]. Our ecoJoin,
which relates to these works in two aspects. First, our ecoJoin ex-
tends the symmetric hash-join [52] with a record eviction policy.
In contrast to Kang et al. [19], we reduce the cleanup overhead
by only evicting records if the hash-table is close to its maximum
capacity. Second, our ecoJoin focuses on the efficient utilization of
SoCs with integrated CPUs and GPUs. Karnagel et al. [21] and Kör-
ber et al. [25] demonstrated performance advantages of GPUs on
similar hardware. In contrast to this work, our ecoJoin leverages a
hash-based join if the stream consists of multiple keys, which shifts
the trade-off between GPU and CPU. Further research proposed
stream joins for FPGAs [26, 31, 36] to improve energy efficiency.
However, FPGAs are still not common on edge hardware.

5 CONCLUSION
We conclude that combining orthogonal dimensions leads to higher
energy-efficiency when joining streams. The most significant en-
ergy savings come from increased computational efficiency, fol-
lowed by adaptive batching with frequency scaling. iGPUs are
competitive with CPUs. Overall, with ecoJoin, we make the case
that IoT environments present new challenges for energy-aware
data stream processing. In future work, we will incorporate ecoJoin
in our new data processing platform NebulaStream [54].
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