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k-Means is widely used in diverse fields of study. Quick 
execution allows practitioners to explore more data.

Fast, data-parallel GPUs expose the cross-processing 
problem and the multi-pass problem as bottlenecks.

We present a new centroid update algorithm for GPUs & 
fuse GPU kernels for a single data pass per iteration.

Cross-processing incurs transfer overhead.
Single-pass reduces data accesses by half.

GPU clusters faster than CPU despite 
data transfer on each iteration.

Partitioning by both points and features 
reduces cache footprint of centroid update 
for up to 10× faster execution on GPUs.

A single data pass increases throughput by 
up to 2×, but enlarges cache footprint.

20× better overall performance paves 
the way for high-bandwidth NVLink.

 

github.com/TU-Berlin-DIMA/CL-kmeans
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Problem 1: Cross-Processing between GPU and CPU

Problem 2: Multiple Data Passes on same Processor

Goal: Single Data Pass
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Partitioning on points and features unties 
cache footprint from number of features.

Partitioning on data points requires each 
thread to store all data features in cache.
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