

 Abstract

 Execution Strategy Comparison

Scale to Large Data Sets Take Home

Thread-wise Centroid Update

Thread-Group-Local Synchronization

Thread-Group Centroid Update

Funding Acknowledgements

This work was funded by the EU projects SAGE (671500) and E2Data
(780245), DFG Priority Program “Scalable Data Management for Future
Hardware” (MA4662-5), and the German Ministry for Education and
Research as BBDC (01IS14013A).

Open Source Repository

Clemens Lutz
1
, Sebastian Breß

1,2
, Tilmann Rabl1,2, Steffen Zeuch1, Volker Markl

1,2

Efficient k-Means on GPUs

1
firstname.lastname@dfki.de

2
firstname.lastname@tu-berlin.de

k-Means is widely used in diverse fields of study. Quick
execution allows practitioners to explore more data.

Fast, data-parallel GPUs expose the cross-processing
problem and the multi-pass problem as bottlenecks.

We present a new centroid update algorithm for GPUs &
fuse GPU kernels for a single data pass per iteration.

Cross-processing incurs transfer overhead.
Single-pass reduces data accesses by half.

GPU clusters faster than CPU despite
data transfer on each iteration.

Partitioning by both points and features
reduces cache footprint of centroid update
for up to 10× faster execution on GPUs.

A single data pass increases throughput by
up to 2×, but enlarges cache footprint.

20× better overall performance paves
the way for high-bandwidth NVLink.

github.com/TU-Berlin-DIMA/CL-kmeans

Point Assignment Centroid Update

Point Assignment Centroid Update

Problem 1: Cross-Processing between GPU and CPU

Problem 2: Multiple Data Passes on same Processor

Goal: Single Data Pass

Point Assignment Centroid Update
Transfer

Barrier

Thread
Group G

Thread
Group 1

Thread
Group 0

Feature
Sums

Merge Local
Hash Tables

Input
Points

Sum Features in
Local Hash Tables

k × t

k × t

k × t
1 2 3

1. Solve
Cross-

Processing

2.
 S

ol
ve

M
ul

ti-
Pa

ss

Synchronization

Point Assignment (PA)

Global Barrier (B)

Centroid Update (CU)
1 2 3 4 5 6 7 8

1 2 3 4 5 6 7 8
ThreadsData Pass

1x

2x

PA

Local B

CU

Work Group 1 Work Group 2

PA

CU

Local B1x

Data Pass

vs.Multi-Pass Strategy Single-Pass StrategySingle-Pass Strategy

Partitioning on points and features unties
cache footprint from number of features.

Partitioning on data points requires each
thread to store all data features in cache.

Merge Local
Hash Tables

Feature
Sums

Input
Points

Thread 1

Thread 2

Thread T

Thread 0
Thread 1
Thread T

k × d

k × d

k × d
1 2 3

Sum Features in
Local Hash Tables

P
oi

nt
s

(N
)

Features (d)
P

oi
nt

s
(N

)
Features (d)

k=64

