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Efficiently load and parse 
CSV files end-to-end
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Contributions

 Parsing on GPUs

 Streamed loading with GPUDirect RDMA

 Evaluate fast interconnects for end-to-end streamed loading
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Parsing on GPUs



Background: Warp Divergence

 No branch prediction on GPUs

 Threads execute in groups of 32, a warp

 Warp execute same instruction during cycle

 if(cond) {…} else {…} can cut performance in half
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Parsing on GPUs

 Parsers typically have complex control flow (warp divergence)

 Exploring new trade-off:
Simplify control flow at expense of additional data passes (700+ GB/s)
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Conceptual Overview: Quoted Mode
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Main Challenges

 Partitioning the data into chunks for parallel processing

 Determining each chunk’s context

 Deserializing fields in parallel
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Load Balancing Warps
12



13
Row 1 Row 2 Row 3



14



15



16



16



Fast Mode: Quoted Field Delimiters

17



Fast Mode: Quoted Field Delimiters

17

ID Name Philosophy

1 “Aristotle” “Quality is not an act, it is a habit.”

2 “Plato” “When men speak ill of thee, live so as 
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nobody may believe them.”
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ID Name Philosophy

1 “Aristotle” “Quality is not an act

it is a habit.” 2 “Plato”

“When men 
speak ill of thee

live so as nobody may 
believe them.” 3

… … …



Quoted Mode

Character is considered quoted whenever the number
of preceding quotation marks is uneven.
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Quoted Mode

19



 Deserialization challenges on GPU:
 Parallelization
 Warp divergence and occupancy
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 Deserialization challenges on GPU:
 Parallelization
 Warp divergence and occupancy

 Row-based: complex kernels, inefficient memory access
 Column-based: same data type, same kernel logic and control flow
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 Like SQL’s DDL, users specify a column’s max length along its type
char(15) int(8) float(12) ...

 Every thread deserializes one field, warp 32 fields in parallel
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Integer Deserialization:



Streaming



Streaming
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Partitions
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Context Handover
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End-to-End Loading with RDMA

Partition assigned to free worker:
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End-to-End Loading with RDMA

Partition assigned to free worker:
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Evaluation



Experiment Setup

 Intel Xeon Gold 5115 (10c/20t)

 Nvidia Tesla V100 (PCIe 3.0)

 Nvidia Tesla V100 (NVLink 2.0)

 InfiniBand 100 Gb/s
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 NYC Yellow Taxi Trips
(1.9 GB, 22.5M rows, 18 cols)

 TPC-H Lineitem
(719 MB, 6M rows, 16 cols)

 int_444
(1 GB, 70M rows, 3 columns)
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CPU vs. GPU

31
(CPU) (CPU) (CPU) (CPU) (CPU-32c)

NYC Yellow Taxi

GPUs outperform CPUs
in end-to-end parsing
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NYC Yellow Taxi

GPUs saturate
PCIe 3.0 and RDMA



Fast Mode vs. Quoted Mode
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Fast Mode vs. Quoted Mode

33

Quotes add ~2x parsing overhead
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Hardware Scalability

34

Desktop-GPUs often provide
sufficient performance

Server-GPUs provide
fast interconnects and RDMA



Conclusion

GPUs can solve data loading bottleneck

New way to integrate GPUs into DBs
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