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Abstract: Comma-separated values (CSV) is a widely-used format for data exchange. Due to
the format’s prevalence, virtually all industrial-strength database systems and stream processing
frameworks support importing CSV input.

However, loading CSV input close to the speed of I/O hardware is challenging. Modern I/O devices
such as InfiniBand NICs and NVMe SSDs are capable of sustaining high transfer rates of 100 Gbit/s
and higher. At the same time, CSV parsing performance is limited by the complex control flows that
its semi-structured and text-based layout incurs.

In this paper, we propose to speed-up loading CSV input using GPUs. We devise a new parsing
approach that streamlines the control flow while correctly handling context-sensitive CSV features
such as quotes. By offloading I/0O and parsing to the GPU, our approach enables databases to load
CSVs at high throughput from main memory with NVLink 2.0, as well as directly from the network
with RDMA. In our evaluation, we show that GPUs parse real-world datasets at up to 76 GB/s, thereby
saturating high-bandwidth I/O devices.

Keywords: CSV; Parsing; GPU; CUDA; RDMA; InfiniBand

1 Introduction

Sharing data requires the data provider and data user to agree on a common file format.
Comma-separated values (CSV) is currently the most widely-used format for sharing tabular
data [DMB17, Nel7, Mel16]. Although alternative formats such as Apache Parquet [Ap17]
and Albis [Tel8] exist, in the future the CSV format will likely remain popular due to
continued advocacy by open data portals [KH15, Eu20]. As a result, database customers
request support for loading terabytes of CSV data [Oz18]. Fast data loading is necessary to
reduce the delay before the data are ready for analysis.

Fresh data are typically sourced either from disk or streamed in via the network, thus loading
the data consists of device I/O and parsing the file format [Me13]. However, recent advances
in I/O technologies have lead to a data loading bottleneck. RDMA network interfaces and
NVMe storage arrays can transfer data at 12.5 GB/s and beyond [Bel6, Ze19]. Research
suggests that CPU-based parsers cannot ingest CSV data at these rates [Ge19, SJ20].
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In this paper, we investigate how I/O-connected GPUs enable fast CSV loading. We
stream data directly to the GPU from either main memory or the network using fast GPU
interconnects and GPUDirect. Fast GPU interconnects, such as AMD Infinity Fabric [AM19],
Intel CXL [CX19], and Nvidia NVLink [Nv17], provide GPUs with high bandwidth access
to main memory [Le20b], and GPUDirect provides GPUs with direct access to RDMA
and NVMe I/O devices [Nv20a]. Furthermore, next-generation GPUs will be tightly
integrated into RDMA network cards to form a new class of data processing unit (DPU)
devices [Nv20b]. To parse data at high bandwidth, we propose a new GPU- and DPU-
optimized parsing approach. The key insight of our approach is that multiple data passes in
GPU memory simplify complex control flows, and increase computational efficiency.

In summary, our contributions are as follows:

(1) We propose a new approach for fast, parallel CSV parsing on GPUs (Section 3).

(2) We provide a new, streamed loading strategy that uses GPUDirect RDMA [Nv20a]
to transfer data directly from the network onto the GPU (Section 4).

(3) We evaluate the impact of a fast GPU interconnect for end-to-end streamed loading
from main memory and back again (Section 5). We use NVLink 2.0 to represent the
class of fast GPU interconnects.

The remainder of this paper is structured as follows. In Section 2, we give a brief overview
of performing I/O on GPUs, and of related work on CSV parsing. Then, we describe our
contributions to CSV parsing and streaming I/O in Sections 3 and 4. Next, we evaluate
our work in Section 5, and discuss our findings on loading data using GPUs in Section 6.
Finally, we give our concluding remarks in Section 7.

2 Background and Related Work

In this section, we describe how GPUDirect RDMA and fast GPU interconnects enable
high-speed I/O on GPUs. We then give an overview of CSV parsing, and differentiate our
approach from related work on CSV loading.

2.1 1/0 on GPUs

GPUs are massively parallel processors that run thousands of threads at a time. The
threads are executed by up to 80 streaming multiprocessors (SMs) on the Nvidia “Volta”
architecture [Nv17]. Each SM runs threads in warps of 32 threads, that execute the same
instruction on multiple data items. Branches that cause control flow to diverge thus slow
down execution (warp divergence). Within a warp, threads can exchange data in registers
using warp shuffle instructions. Up to 32 warps are grouped as a thread block, that can
exchange data in shared memory. The GPU also has up to 32 GB of on-board GPU memory.
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I/0O on the GPU is typically conducted via a PCIe 3.0 interconnect that connects the GPU to
the system at 16 GB/s. Recently, fast interconnects have emerged that provide system-wide
cache-coherence and, in the case of NVLink 2.0, up to 75 GB/s per GPU [IB18]. Databases
usually use these interconnects to transfer data between main memory and GPU memory,
thus linking the GPU to the CPU. However, GPUDirect RDMA and GPUDirect Storage
connect the GPU directly to an I/O device, such as an RDMA network interface (e.g.,
InfiniBand) or an NVMe storage device (e.g., a flash disk). This connection bypasses the
CPU and main memory by giving the I/O device direct memory access to the GPU’s
memory. Although the data bypasses the CPU, the CPU orchestrates transfers and GPU
execution.

GPUDirect Storage has been used in a GPU-enabled database to manage data on flash
disks [Lel6]. In contrast, we propose to load data from external sources into the database.

In summary, fast interconnects and GPUDirect enable the GPU to efficiently perform I/O.
In principle, these technologies can be combined. However, due to our hardware setup,
in our experimental evaluation we distinguish between NVLink 2.0 to main memory, and
GPUDirect RDMA with InfiniBand via PClIe 3.0.

2.2 CSV Parsing

CSV is a tabular format. The data are logically structured as records and fields. Thus, parsers
split the CSV data at record or field boundaries to facilitate later deserialization of each
field. The parser determines the structure by parsing field (’,’) and record (’\n’) delimiters,
as CSV files provide no metadata mapping from its logical structure to physical bytes.
Quotes (°"’) make parsing more difficult, as delimiters within quotes are literal characters
and do not represent boundaries. The CSV format is formalized in RFC4180 [ShO05],
although variations exist [DMB17].

Parsing CSV input in parallel involves splitting the data into chunks that can be parsed by
independent threads. Initially, the parser splits the file at arbitrary bytes, and then adjusts the
split offsets to the next delimiter [Me13]. Detecting the correct quotation context requires a
separate data pass, most easily performed by a single thread [Mel3]. As quotes come in
pairs, parallel context detection first counts all quotes in each chunk, and then performs a
prefix sum to determine if a quote opens (odd) or closes (even) a quotation [Eal6, Gel9].

CPU parsers have been optimized by eliminating data passes through speculative context
detection [Ge19, Lel7], and replacing complex control flows with SIMD data flows [Ge19,
LL19,Lel7, Mel3]. In contrast to these works, we optimize parsing for the GPU by applying
data-parallel primitives (i.e., prefix sum) and by transposing the data into a columnar format.
These optimizations reduce warp divergence on GPUs, but add two data passes for a total of
3 passes (without context detection) or 4 passes (with context detection). We reduce the
overhead of these additional passes by caching intermediate data in GPU memory.
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Stehle and Jacobsen have presented a GPU-enabled CSV parser [SJ20]. Their parser tracks
multiple finite state machines to enable a generalization to other data formats, e.g., JSON
or XML. Our evaluation shows that this generality is computation-intensive and limits
throughput. In contrast, we explore loading data directly from an I/O device and a fast GPU
interconnect. These technologies require a fast CSV parsing approach. We thus minimize
computation by specializing our approach to RFC4180-compliant CSV data. However, our
approach is capable of handling CSV dialects [DMB17] by allowing users to specify custom
delimiters and quotation characters at runtime. In addition, our approach can detect certain
errors with no performance penalty, e.g., CSV syntax issues involving “ragged” rows with
missing fields and cell-level issues such as numerical fields containing units. Detected issues
can be logged and reported to the user.

3 Approach

In this section we introduce a new algorithm, CUDAFastCSV, for parsing CSV data that is
optimized for GPUs. Optimizing for GPUs is challenging, because parsers typically have
complex control flows. However, fast GPU kernels should regularize control flow to avoid
execution penalties caused by warp divergence. Therefore, our approach explores a new
trade-off: we simplify control flow at the expense of additional data passes, and exploit the
GPU’s high memory bandwidth to cache the data during these passes. This insight forms
the basis on which we adapt CSV parsing to the GPU architecture.

We first give a conceptual overview of our approach in Figure 1. Next, we describe and
discuss each step in more detail with its challenges and solutions in the following subsections.

Conceptually, the CSV input is first transferred to GPU memory from a data source, e. g.,
main memory or an I/O device. The input is then split into equally sized chunks to be
processed in parallel. With the goal to index all field positions in the input data, we first
count the delimiters in each chunk and then create prefix sums of these counted delimiters.
Using the prefix sums, the chunks are processed again to create the Fieldsindex. This index
allows the input data to be copied to column-based tapes in the next step. Tapes enable

CSVinput
|
e
Host memory

GPU memory

L |

Splitinto chunks . Count delimiters o Prefix-sum: N Create | Create tapes | Deserialize

P : in chunks "1 Field offsets "| Fieldsindex for columns tapes

Data Pass Data Pass Data Pass

Fig. 1: Conceptual overview of our approach
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us to vectorize processing by transposing multiple rows into a columnar format. Creating
the FieldsIndex and tapes are logically separate steps, but can be fused into a single data
pass. Finally, each tape is deserialized in parallel. The resulting data are column-oriented
and can then be further processed on the GPU or copied to another destination for further
processing, e. g., to the host’s main memory.

In this default Fast Mode, the parser is unaware of the context and correct quotation scope
when fields are enclosed in quotation marks. To create a context-aware FieldsIndex, we
introduce the Quoted Mode, as fields may themselves contain field delimiters. Quoted Mode
is an alternative parsing mode that additionally keeps track of quotation marks. Quoted
Mode allows us to parallelize parsing of quoted CSV data, but it is more processing intensive
than the default parsing mode. However, as well-known public data sources indicate that
quotes are rarely used in practice>, the main focus of our work is on the Fast Mode.

In this section, we assume the CSV input already resides in GPU memory. In Section 4, we
present Streaming I/0, which allows incoming chunks of data to be parsed without the need
for the entire input data to be in GPU memory.

Overall, our data-parallel CSV parser solves three main challenges: (1) splitting the data into
chunks for parallel processing, (2) determining each chunk’s context, and (3) vectorized
deserialization of fields with their correct row and column numbers.

3.1 Parallelization Strategy

Parsing data on GPUs requires massive parallelism to achieve high throughput. In the
following, we explain how we parallelize CSV parsing in our approach.

Simply parallelizing by rows requires iterating over all data first. It also results in unevenly
sized row lengths. This causes subsequent parsing or deserialization threads in a warp to
stall during individual processing, thus limiting hardware utilization. Instead, Figure 2
shows how we split the input data at fixed offsets to get equally sized chunks. These chunks

chunk 0

1D, Country, I50Code, Population\n 5
URSLY 1o alaicden) ID, Country, ISOCode, Populationnl, Germany, DE, 83149319x2, Spain, ES, 4

1,Germany, DE, 83149319\n

2,5pain, ES, 47007367\n chunkl
3,France, FR, 67076431\n 7007367w3, France, FR, 6707643104, Italy, IT, 6031711615, Japan, JP, 1261
4,Italy,IT,60317116\n

,Japan, JP, 126150745\n chunk2

& o

,China,CN,1427647786\n 5074516, China,CN, 142764778617, United States of America,US, 328239
,United States of America,US,328239523\n
,Canada, CA,37894799\n

=i

chunk3
5238, Canada, CA, 378947999, Australia, AU, 2572189210, Russian F...

- ®

Fig. 2: Splitting input into equally sized, independent, chunks

4Kaggle. https://www.kaggle.com/datasets?filetype=csv
SNYC OpenData. https://data.cityofnewyork.us/browse?limitTo=datasets
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are independent of each other and individually processed by a warp. This avoids threads
from becoming idle as they transfer and process the same amount of data.

The choice of chunk size and how a warp loads and reads its chunks impacts the paralleliz-
ability of the delimiter-counting process and, ultimately, the entire parsing process. Because
coalesced byte-wise access is not enough to saturate the available bandwidth, we read four
bytes per thread, which correspond to the 128 bytes of a GPU memory transaction per warp.
However, we experimentally find that looping over multiple consecutive 128-byte chunks
per warp increases bandwidth even more, compared to increasing the number of thread
blocks. This reduces the pressure on the GPU’s warp scheduler and the CUDA runtime.

To identify chunk sizes that allow for optimal loading and processing, we evaluate several
kernels that each load chunks of different sizes. We discover that casting four consecutive
bytes to an int and loading the int into a register is more efficient than loading the bytes one
at a time. For input that is not a multiple of 128 bytes, a challenge here is to efficiently avoid
a memory access violation in the last chunk. Using a branch condition for bounds-checking
takes several cycles to evaluate. We avoid a branch altogether by padding the input data
with NULLSs to a multiple of 128 bytes during input preparation. Conventionally, strings
are NULL-terminated, thus any such occurrence simply causes these padded bytes to be
ignored during loading and later parsing.

3.2 Indexing Fields

We can now start processing the chunks. Our goal in this phase is to index all of the
field positions of the input data in the FieldsIndex. This index is an integer array of yet
unknown size rows*columns with a sequence of continuous field positions. We construct
the FieldsIndex in three steps.

In the first pass over the chunks, every warp counts the field delimiters in its chunk. The
number of delimiters in each chunk is stored in an array. For optimization purposes, record
delimiters are treated as field delimiters, thus, creating a continuous sequence of fields.

Chunk Delimiters Prefix sum
chunk @ (offset)
ID,Country, ISOCode, Populationwl,Germany,DE, 8314931902, Spain,ES, 4 1 0
chunk 1
7007367n3, France,FR, 6707643114, Italy,IT,60317116w5,Japan,JP, 1261 12 1
chunk 2
50745n6,China,CN,1427647786w7,United States of America,US, 328239 8 23
chunk 3
5238, Canada,CA,3789479919, Australia,AU,25721892wn10,Russian F... 10 31

Fig. 3: Computing the field offset for every chunk using a prefix sum
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Prefix sum Chunk
(offset) 0— 1 2 3 45 6 (7 8, 9 10—t
0 + ID,Country, ISOCode, Populationwnl, Germany, DE, 831493192, Spain,ES, 4

12, 13 14 15 16,17 18- 19 20, 21 22 23
1 + 70073673, France,FR, 670764314, Italy,IT,60317116w5,Japan,JP,1261

24 25 26 27 28 29 30 31
23 + 50745n6,China,CN, 14276477867 ,United States of America,US,328239

32 33 34— 35 36, 37 38 39 40 4
31 + 5238, Canada, CA, 378947999, Australia,AU,25721892w10,Russian F...

Fig. 4: Using the chunk’s prefix sum to infer field positions

In the second phase, we compute the chunks’ field offsets with an exclusive prefix sum, as
illustrated in Figure 3. At the end of the prefix sum calculation, the total number of fields
is automatically available. We divide the number of fields by the number of columns to
obtain the number of rows, and allocate the necessary space for the FieldsIndex array in
GPU memory. The number of columns is specified in the table schema.

In the third and final phase, the FieldsIndex can now be filled in parallel. We perform a
second pass over all the chunks and scan for field delimiters again. As shown in Figure 4,
the total number of preceding fields in the input data can instantly be inferred using the
prefix sum at a chunk’s position.

For a thread to correctly determine a field’s index when encountering its delimiter, however,
it also needs to know the total number of delimiters in the warp’s preceding threads. Thus,
for every 128 byte loop iteration over the chunk, threads first count how many delimiters
they have in their respective four byte sector. Since threads within a warp can efficiently
access each other’s registers, calculating an exclusive prefix sum of these numbers is fast.
These prefix sums provide the complete information needed to determine a field’s exact
position and index to store it in the FieldsIndex array. The length of a field can also be
inferred from the FieldsIndex.

3.2.1 Quoted Mode

For the Quoted Mode, additional steps are required to create a correct FieldsIndex.

When counting delimiters in the first phase, quotation marks are simultaneously counted in
a similar manner. After calculating the prefix sums for the delimiters, the prefix sums for
the quotation marks are created as well. In the third phase, during the second pass over the
chunks when counting delimiters again, quotation marks are also counted again, and prefix
sums are created for both within the warp.
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ID,Name, Philosophy\n

1f"Aristotle"PJ"Quality is not an actl] it is a habit."|H

2,"Plato", "When men speak ill of theel live so as nobody may believe them."\n
3,"Epictetus","It's not what happens to you, but how you react to it that matters."\n

FieldsIndex

0 1 2 3 4 5 B 7 8 9 W 0 R B U 1 stream 2 3 4 5 6 7 8 9 M 1
compaction

0 1
0 3|8 19 20133 0 7375 0 149151 0 163 0 233 .. 0 3|8 19 21 33 73 75 149/151 163233 ...

Fig. 5: Additional pass in Quoted Mode to remove invalid delimiters

We then exploit the fact that a character is considered quoted whenever the number of
preceding quotation marks is uneven. Before writing a field’s position into the FieldsIndex
when encountering a record or field delimiter, first the number of total preceding quotation
marks at this position is checked. Should that number be uneven, a sentinel value of 0 is
written to the FieldsIndex at the index that the field’s position would otherwise have been
written to. The sentinel value represents an invalid delimiter. This approach also allows for
quotation symbols inside fields since, in accordance with RFC4180, quotation marks that
are part of the field need to be escaped with another quotation mark.

After the FieldsIndex is created, a stream compaction pass is done on the FieldsIndex to
remove all invalid, i. e., quoted, delimiters and remove gaps between valid, i. e., unquoted,
delimiters. We illustrate an example with valid and invalid field delimiters in Figure 5.
Separating this additional step from the actual FieldsIndex creation simplifies control flow
and helps to coalesce writes to memory.

3.3 Deserialization

Efficient deserialization on the GPU is a many-sided problem.

068 Fickd

. - 34[{ilGAs1 972 . Not only is the question of how to vectorize deserialization
challenging, but also how to keep the entire warp occupied.
TS TE 3T T8 A simple approach is to have every thread deserialize a

field. However, we must assume that neighboring columns
ﬁxmﬂ have different data types. Constructing a generic kernel
+3x10) -es3 | that can handle all data types involves many branches,
g:lgj causing warp divergence. Additionally, using any row-based

approach requires adding lots of complexity to work in
parallel. Complexity that is likely to cause idle threads. Any
approach that is column-based, however, can make use of the fact that all fields in the
column have the same data type, thus, giving us an easy pattern to vectorize. Every thread in
the warp deserializes one field, allowing the entire warp to deserialize 32 fields in parallel.
Similar to SQL’s DDL (Data Definition Language), users specify a column’s maximum

Fig. 6: Deserialization
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length along its type for deserialization purposes. To keep the warp’s memory access pattern
coalesced, every thread first consecutively reads four aligned bytes into a dedicated register
until enough bytes were read to satisfy the specified length of the column. If all column
fields are contiguous in memory, the warp is likely able to coalesce memory accesses. In a
loop equal to the size of the specified column length, every thread can now read and convert
each digit from a register while calculating the running sum, as illustrated in Figure 6.

While this approach can lead to workload imbalances within a warp, i. e., when neighboring
fields in a warp have unequal lengths, this approach causes no warp divergence and only
uses one branch in the entire kernel.

3.4 Optimizing Deserialization: Transposing to Tapes

Since our deserializer uses a column-based approach, its memory access pattern only allows
for a coalesced and aligned memory access with full use of all the relevant bytes when given
the optimal circumstances. CSV, however, is a row-oriented storage format. The optimal
circumstances would only come into effect when there is just one column or the field’s
data types are identical along a multiple of 32 wide field count. To improve deserialization
performance for columns with various data types we introduce deserialization with tapes.
Tapes are buffers in which the parser temporarily stores fields in a column-oriented layout.
The column-oriented layout enables vectorized deserialization of fields.

We illustrate our approach with an example in Figure 7. A separate tape for every column is
created in an additional step during the parsing process. We assume that the length of each
column is specified by the table’s schema (e.g., CHAR(18)). We then define a tape’s width
(tapeWidth) equal to its specified column length. For every field in the FieldsIndex, the
input’s field value is copied to its column’s tape at an offset equal to the field’s row number:

tapeAddress(field) :=tapecoi(fictay + row(field) X tapeWidtheoi(sicia)
Field values that do not fully use their tapeWidth are right-padded with NULLs on the tape.
Disease, Year,Country,Cases\n
COVID-19,2020,DE, 184492\n

HIN1,2009,ES,1538\n
Spanish Flu,1918,FR,187500\n

Disease : char(12) Year : uint(4) Country : char(2) Cases : uint(8)

C/O|V|I D/ -1 9M\0\0\0NO 2/ 0/2/0 D E 118 4 49 2 \0/\0
Hi 1N 1 [\0[\0[\0[\0[\0 |\ \0\O 2/0/0/9 E S 1153 8\0\0|\0(\0
Siplaln/ii|s|h Flllul\o 17918 F R 1187 5 00 \0\0

Fig. 7: Visual representation of deserialization tapes
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For our Fast Mode, materializing the entire FieldsIndex in GPU memory can be skipped and
instead the chunk’s FieldsIndex is temporarily written to shared memory. When a chunk’s
FieldsIndex is complete, the field values can be directly copied onto the tapes. However, the
length of the chunk’s last field cannot be calculated from the chunk’s FieldsIndex alone.
Instead, we work around this obstacle by saving each chunk’s first delimiter offset along
the chunk’s delimiter count during the first step of the parsing process. Combining these
two steps saves us from materializing the FieldsIndex and from having to do a total of four
passes over the input data. However, we cannot perform this optimization in the Quoted
Mode, as the complete FieldsIndex is required to detect the quotation context.

4 Streaming 1/0

We extend our approach to allow streaming of partitioned input data. This enables us to
start parsing the input before it is fully copied onto the GPU, i.e., reducing overall latency,
and for input that is too big to otherwise fit into the GPU’s memory.

The input is split into partitions before being copied to the GPU’s memory for individual
and independent parsing without the need for the complete input data to be on the GPU.
The partitions are equal in length and of size streamingPartitionSize.

4.1 Context Handover

In typesetting, widows are lines at the end of a paragraph left dangling at the top from the
previous page. Orphans are lines at the start of a paragraph left dangling at the bottom for
the next page. Both are separated from the rest of their paragraph. Partitioning our input data
creates a similar effect that we need to account for, as illustrated in Figure 8. In a partition,
we consider the last row an orphan, which will not be parsed. Instead we copy the orphan’s
bytes to a widow buffer. The next partition prepends available data from the widow buffer
to its partition data before starting the parsing process. The widow buffer’s size is defined
by a configuration variable. We set its default size to 10 KB, which is sufficient to handle
single rows spanning over 10,000 characters.

ES,47007367\n
JP,126150745\n
DE, 83149319\n
FR, 67076431\n
IT,60317116\n ! . |
CN,1427647786\n Rows parsed in partition n

Widow Orphan
Partition n-1 Partition n | Partition n+1

...7367\nJP,12615|0745nDE, 8314931 9wFR, 67076431‘ \IT, 60317 116wCN,142764. ..

Fig. 8: Widows are taken from the previous partition, while orphans are left for the next partition
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4.2 End-to-End Loading

We realize streaming as WorkStream items in our imple-
mentation, representing a CUDA stream and a partition
for processing. Every WorkStream item has a dedicated
| : partitionBuffer in the GPU’s device memory that is
| <2 used to copy its partition’s chunks into. For RDMA
= A input data, this partitionBuffer is also automatically
pataFiow registered for GPUDirect transfers via RDMA.
In Figure 9, we show the four states of a WorkStream.
(1) First, an available WorkStream requests a remote
memory read, which (2) the remote host responds to
by copying the requested data directly into GPU memory. Afterwards, (3) the local CPU
schedules a kernel for the WorkStream for parsing. Finally, (4) the kernel is synchronized
after finishing and the partition’s result data can be optionally transferred to main memory.

Local Parser Host Remote Data Host

CPU 1

Fig. 9: A WorkStream’s control and
data flow for its partition

5 Evaluation

In this section we evaluate the performance of parsing CSV data on GPUs.

5.1 Experiment Setup

In the following, we give an overview of our experimental evaluation environment.

Hardware. We use two identical machines for the majority of our testing (Intel Xeon
Gold 5115, 94 GB DDR4-2400, Nvidia Tesla V100-PCIe with 16 GB HBM2, Mellanox
MT27700 InfiniBand EDR, Ubuntu 16.04). A third machine was used for NVLink related
evaluations (IBM AC922 8335-GTH, 256 GB DDR4-2666, Nvidia Tesla V100-SXM2 with
16 GB HBM2, Ubuntu 18.04). For all our tests, we use only one NUMA node, i.e., a single
GPU and CPU with their respective memory.

Methodology. We measure the mean and standard error over ten runs with the help of high-
resolution timers. For GPU-related measurements, we adhere to Nvidia’s recommendations
when benchmarking CUDA applications [FJ19]. The time for the initialization of processes,
CUDA, or memory, is not included in these measurements. All input files are read from the
Linux in-memory file system tmpfs. With the exception of NVLink-related measurements,
we note that our measurements are stable with a standard error of less than 5% from the
mean. We measure the throughput in GB/s.

Datasets. For our evaluations we use a real-world dataset (NYC Yellow Taxi Trips
Jan-Mar 2019, 1.9 GB, 22.5M records, 14 numerical fields out of 18, short and con-
sistent record lengths), a standardized dataset (TPC-H Lineitem 2.18.0, 719 MB, 6M records,
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16 fields of various data types and string fields with varying lengths), and a synthetic dataset
(int_444, 1 GB, 70M records, three fields of four random digits).

Databases and Parsers. In Section 5.2.2, we compare CUDAFastCSV in Fast Mode to
CPU and GPU baselines. OmniSciDB (v5.1.2), PostgreSQL (v12.2), HyPer DB (v0.5),
ParPaRaw [SJ20], RAPIDS cuDF (v0.14.0), and csvmonkey (v0.1). PostgreSQL and
csvmonkey are single-threaded, all other baselines parse in parallel on all CPU cores or on
the GPU. Except for PostgreSQL and ParPaRaw, we explicitly disable quotation parsing.

I/0. In Section 5.2.3, we stream the input data from four I/O sources to compare performance
against the potentially transfer bound parsing from Section 5.2.2. We stream data over
interconnects and InfiniBand using two datasets. In contrast to end-to-end parsing, results
are not copied back to the host’s main memory. On-GPU serves as a baseline with the input
data already residing in GPU memory. PCle 3.0 serves as an upper bound for I/O devices on
the host. NVLink 2.0 is, in comparison to PCle 3.0, a higher-bandwidth and lower-latency
alternative [Le20b]. In RDMA with GPUDirect one machine acts as the file server, while
another machine with CUDAFastCSV in Fast Mode streams the input data using RDMA
directly into the GPU’s memory using GPUDirect, bypassing the CPU and main memory.

5.2 Results

In this section, we present our performance results and comment on our observations.

5.2.1 Tuning Parameters

In this section, we evaluate the parameters for performance tuning and scalability that we
introduce in Section 3.

Chunk Size. The choice of the chunkSize in CUDAFastCSV determines how much of the
input data a warp processes. An increasing size requires more hardware resources per warp
but also reduces the overhead associated with scheduling, launching, and processing new
thread blocks or warps. Figure 10 shows the throughput as a function of the chunk size. The
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observed performance reflects our design discussion in Section 3.1. The memory bandwidth
for small chunks initially increases when processing 128-byte multiples, but then drops,
e. g., before 2048 bytes. The drop stems from one less concurrent thread block running on
the SM due to a lack of available shared memory resources. A slight rise in performance
before every drop shows the improved resource utilization of the available resources. We
conclude that the best chunk size is 1024 bytes.

Input Size. Figure 11 shows the ramp up of CUDAFastCSV’s performance when given an
increasingly larger input file. While the 1 MB file only achieves 4.5 GB/s, the throughput
already strongly increases with a 10 MB file to 33.6 GB/s and continues to rise until it
approaches its limit of approximately 90 GB/s. We conclude that performance scales quickly
with regard to the input size, and maximum throughput is approached at 100 MB.

Streaming Size. In Figure 12, we define a baseline of approximately 12 GB/s for PCle 3.0
as it represents the maximum possible throughput for that machine. In our results, the
throughput scales almost linearly with the streamingPartitionSize up until 10 MB before it
hits its maximum of 11 GB/s at 20 MB. For comparison, we include results from the same
experiment over NVLink 2.0. Ramp-up speed is very similar to PCIe 3.0 but keeps rising
when the limitations of PCle 3.0 would otherwise set in. In contrast, with NVLink 2.0 we
achieve a peak throughput of 48.3 GB/s. Thus, NVLink 2.0 is 4.4x faster than PClIe 3.0.
However, our implementation is not able to achieve NVLink’s peak bandwidth due to
the limited amount of DMA copy engines, and due to the overhead from data and buffer
management required for streaming. This leads to delays, as transfers and compute are not
fully overlapped. We conclude that PCle 3.0’s bandwidth is saturated quickly and its best
streamingPartitionSize is already achieved at 20 MB. NVLink 2.0 exposes PCle 3.0 as a
bottleneck for end-to-end parsing in comparison.

Warp Index Buffer Size. The warpIndexBufferSize parameter in CUDAFastCSV limits the
maximum number of found fields in all chunk segments within a warp and is used to reserve
the kernel’s shared memory space in Fast Mode or, in Quoted Mode, the required space in
global memory for the FieldsIndex. It can be altered from its default, 2048 bytes, to increase
parallelism when the underlying data characteristics of the CSV input data allow for it. As
such, less shared memory resources are allocated per thread block, allowing for additional
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thread blocks to run concurrently on the SM. Figure 13 illustrates this behavior as the
amount of concurrent thread blocks steps down whenever the increasing size allocates too
many resources. For a chunk size of 1024, the smallest viable warpIndexBufferSize for the
int_444 dataset is 832. Maximum throughput of around 90.9 GB/s is kept up until 1536. The
default of 2048 falls into the 85.6 GB/s range. To accommodate for a worst-case scenario of
only having empty fields in a 1024 byte chunk, we would need a warpIndexBufferSize of
4096, which reduces our performance to 68.6 GB/s. Larger sizes reduce performance even
further. We conclude that the warpIndexBufferSize has a large impact on performance, as it
is dependent on the underlying structure of the input data.

5.2.2 Databases and Parsers

To evaluate end-to-end parsing performance of CUDAFastCSV, we benchmarked our
approach in Fast Mode against several implementations from different categories as
described in our experiment setup. We use the NYC Yellow Taxi and TPC-H dataset, residing
in the host’s main memory, and measure the time until all deserialized fields are available in
the host’s main memory in either a row- or a column-oriented data storage format.

NYC Yellow Taxi. The performance numbers reported for parsing and deserializing the
1.9 GB dataset in Figure 14 highlight the strength of CUDAFastCSV, which is only limited by
the PCle 3.0’s available bandwidth. This is especially noteworthy, as deserialization includes
nine floating point numbers and five integers out of the 18 total fields. The GPU-based
implementation, cuDF with its new and updated CSV implementation, achieves only a
quarter of the performance of CUDAFastCSV. Our approach is at least 4x times faster
than all CPU-based approaches, i.e., PostgreSQL, HyPer DB, OmniSciDB, csvmonkey,
and *Instant Loading (measured by Stehle and Jacobsen [SJ20] using 32 CPU cores).
CUDAFastCSV over NVLink 2.0 more than triples the performance compared to PCle 3.0.
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and CUDAFastCSV is 1.6x faster and our Fast Mode is even 3.7x

faster. The reason is that we are able to reduce

the overall amount of work, as we do not need to track multiple state machines, and our
approach is less processing-intensive as a result.

TPC-H Lineitem. Figure 15 shows CUDAFastCSV to have a slightly lower throughput
when compared to the previous dataset on both PCIe 3.0 and NVLink 2.0. The bottleneck
for this data set is the transfer of the larger result data back to the host, causing increasingly
longer delays between streamed partitions. For every 100 MB partition of TPC-H data
transferred to the GPU, approximately 118 MB of result data need to be transferred back
to the host, while the NYC Yellow Taxi data only need 93 MB per 100 MB. This causes
delays in input streaming and during processing, as kernel invocations are hindered by data
dependencies and synchronization. cuDF, another GPU-based implementation, shows a
similar drop in performance of approximately 10%. In contrast, some of the CPU-based
implementations were able to significantly improve their performance for the TPC-H dataset,
namely HyPer DB and csvmonkey, due to the smaller number of numeric fields that need to
be deserialized. NVLink 2.0 again more than triples the performance of CUDAFastCSV in
comparison to PCle 3.0.

523 T1/O

We present results for CUDAFastCSV when streamed over two interconnects and InfiniBand.
We evaluate performance using the NYC Yellow Taxi and TPC-H Lineitem datasets to
compare against the potentially transfer bound end-to-end parsing.

NYC Yellow Taxi. The baseline for Figure 17 is 60 GB/s, representing CUDAFastCSV’s
maximum possible performance over an interconnect to the GPU. As seen in the previous
section, while our implementation over PCle 3.0 can fully saturate the bus, it is still less
than a fifth of the on-GPU performance. Again, throughput over NVLink 2.0 more than
triples and shows the limitations of the PCle 3.0 system in comparison. Our RDMA with
GPUDirect approach, streaming the input data from a remote machine directly onto GPU
memory over the internal PCle 3.0 bus, is at an expected sixth of the on-GPU performance.
It is unclear why the GPUDirect connection is slower than the local copy, as the network
is not the bottleneck. Li et al. [Le20a] present similar results, and suggest that PCle P2P
access might be limited by the chipset.
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TPC-H Lineitem. The baseline is established in Figure 18 with 48.5 GB/s. Similarly to the
taxi dataset, PCle 3.0 is saturated but only at a sixth of the on-GPU performance, while
NVLink 2.0 performance is almost triple in comparison. For the RDMA with GPUDirect
approach we achieve similar performance for the TPC-H dataset. Overall, throughput for
this dataset is slightly lower for the baseline and for every interconnect, due to the increased
size of the result data and its consequences as described in the previous section.

5.2.4 Quoted Mode

The Quoted Mode is an alternative parsing mode that keeps track of quotation marks to
create a context-aware FieldsIndex. In contrast to the Fast Mode, the Quoted Mode involves
additional processing steps. We show a comparison between the two modes for three datasets
in Figure 19. For all three datasets, the Quoted Mode has roughly half the throughput of the
Fast Mode. The cause of this performance drop is the materialization of the FieldsIndex in
GPU memory combined with a subsequent stream compaction pass, which are avoided in
Fast Mode. We observe that the performance drops more for the NYC Yellow Taxi dataset
than for the TPC-H and int_444 datasets. The reason is that fields have less content on
average in NYC Yellow Taxi, thus the FieldsIndex is larger in proportion to the data size (i.e.,
more delimiters per MB of data). Nevertheless, throughput is still higher than that of other
implementations in our comparisons.
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5.2.5 Hardware Scalability

In Figure 20, we compare four Nvidia GPU generations to assess the performance impact of
hardware evolution: Pascal, Turing, Volta, and Ampere. The lineup includes the server-grade
Tesla V100-PClIe GPU, and three high-end desktop-grade GPUs (Nvidia GTX 1080 Ti
with 11 GB GDDR5X, RTX 2080 Ti with 11 GB GDDR6, and RTX 3080 with 10 GB
GDDR6X). We measure the parsing throughput of our three datasets, with the data stored
in GPU memory. We observe that the throughput incrementally speeds up by factors of
1.61-2.18, 1.02-1.46, and 1.22—1.3 between the respective generations. The total increase
from Pascal to Ampere is 2.55-3.02 times.

To explain the reasons for the speed-up, we profile the parser on the Tesla V100. Profiling
shows that building the FieldsIndex and transposing to tapes accounts for 85% of the
execution time. The main limiting factor of this kernel are execution stalls caused by
instruction and memory latency. For the TPC-H dataset, warp divergence causes additional
overhead. Thus, throughput increases mainly due to the higher core counts (more in-flight
instructions) and clock speeds (reduced instruction latency) of newer GPUs. In contrast,
higher bandwidth at identical compute power (Volta vs. Turing, both having 14 TIPS for
Int32) only yields a significant speed-up when there is little warp divergence.

6 Discussion

In this section, we discuss the lessons we learned from our evaluation.

GPUs improve parsing performance. In comparison to a strong CPU baseline, our
measurements show that parsing on the GPU still improves throughput by 13x for the NYC
Yellow Taxi dataset. Compared to a weak baseline, throughput can even be improved by 73x
for the TPC-H Lineitem dataset. Thus, offloading parsing to the GPU can provide significant
value for databases.

Fast parsing of quoted data. We show that our approach is able to parallelize context
detection in Quoted Mode, and scale performance up to 51 GB/s. At this throughput, we are
near the peak bandwidth of NVLink 2.0.

Interconnect bandwidth limits performance. In all our measurements, PCle 3.0 does not
provide sufficient bandwidth to achieve peak throughput. Using NVLink 2.0 instead, the
throughput increases by 2.8-3.4x. This improvement shifts the bottleneck to our pipelining
strategy. Removing this limitation would increase throughput further by 1.6x.

Network streaming is feasible. We show that streaming data from the network to the
GPU is possible and provides comparable performance to loading data from the host’s
main memory over PCle 3.0. This strategy provides an interesting building block for data
streaming frameworks.
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GPUs can efficiently handle complex data format features. Features, such as quoted fields,
decrease parsing throughput to 43-55% of the non-quoted throughput. However, this reduced
throughput is still higher than the bandwidth provided by PCle 3.0 and InfiniBand. Thus,
the overall impact is no loss in performance. Only for faster I/O devices, e.g., 400 Gbit/s
InfiniBand, would Quoted Mode become a bottleneck.

GPUs facilitate data transformation. We show that GPUs efficiently transform row-
oriented CSV data into the column-oriented layout required by in-memory databases. As
saturating the I/O bandwidth requires only a fraction of the available compute resources,
GPUs are well-positioned to perform additional transformations for databases [No20].

Desktop-grade GPUs provide good performance per cost. For all our datasets, a desktop-
grade GPU is sufficient to saturate the PCle 3.0 interconnect. At the same time, desktop-grade
GPUs cost only a fraction of server-grade GPUs (7000 EUR for a Tesla V100 compared
to 1260 EUR MSRP for a RTX 2080 Ti in 2021). Thus, buying a server-grade GPU only
makes sense for extra features such as NVLink 2.0 and RDMA with GPUDirect.

7 Conclusion

In this work, we explore the feasibility of loading CSV data close to the transfer rates
of modern I/O devices. Current InfiniBand NICs transfer data at up to 100 Gbit/s, and
multiple devices can be combined to scale the bandwidth even higher. Our analysis shows
that CPU-based parsers cannot process data fast enough to saturate such I/O devices, which
leads to a data loading bottleneck.

To achieve the required parsing throughput, we leverage GPUs by using a new parsing
approach and by connecting the GPU directly to the I/O device. Our implementation
demonstrates that GPUs reach a parsing throughput of up to 100 GB/s for data stored in
GPU memory. In our evaluation, we show that this is sufficient to saturate current InfiniBand
NICs. Furthermore, our NVLink 2.0 measurements underline that GPUs are capable of
scaling up to emerging 200 and 400 Gbit/s I/O devices. We envision that in the future,
loading data directly onto the GPU will free up computational resources on the CPU, and
will thus enable new opportunities to speed-up query processing in databases and stream
processing frameworks.

In conclusion, I/O-connected GPUs are able to solve the data loading bottleneck, and
represent a new way with which database architects can integrate GPUs into databases.
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