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Abstract

GPUs support thousands of concurrent threads and are able to accelerate throughput oriented

workloads by an order of magnitude. In order to implement highly concurrent data structures,

efficient synchronization is necessary. However, correct and efficient synchronization requires

knowledge of the underlying hardware. Especially since the handling of control flow on GPUs

can lead to livelock conditions, which prevent the system from making forward progress.

In this thesis we investigate efficient synchronization techniques on GPUs with Independent

Thread Scheduling. By exploring how the hardware handles control flow, we are able to show

that Independent Thread Scheduling prevents SIMT deadlocks from happening. However, we

identify situations in which livelocks occur on GPUs with Independent Thread Scheduling. To

address this problem, we present a technique that prevents such livelocks from occurring.

By evaluating the performance of different synchronization techniques, we are able to demon-

strate that choosing a different synchronization technique could improve performance by a

factor of 3.4. We show that the performance of a given synchronization technique depends on

the workload and no synchronization technique outperforms the others in every situation. Fi-

nally, we are comparing fine-grained and coarse-grained locking and give advice on when to

choose which granularity.
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Zusammenfassung

GPUs unterstützen tausende von nebenläufigen Threads und sind in der Lage Aufgaben, die

einen hohen Datendurchsatz benötigen, um mehrere Größenordnungen zu beschleunigen. Um

Datenstrukturen, die nebeläufigen Zugriff ermöglichen, zu implementieren, werden effiziente

Synchronisationstechniken benötigt. Eine effektive und korrekte Umsetzung von Synchroniza-

tion macht umfangreiche Kenntnisse der verwendeten Hardware erforderlich. Insbesondere ist

zu beachten, dass Programme, die auf der GPU ausgeführt werden, einen Zustand (Livelock)

erreichen können, in dem ein weiterer Fortschritt des Programms verhindert wird.

In dieser Bachelorarbeit untersuchen wir effiziente Synchronisationstechniken unter der Ver-

wendung einer GPU mit Independent Thread Scheduling. Wir demonstrieren, wie die Hard-

ware Kontrollfluss umsetzt und können bestätigen, dass Independent Thread Scheduling SIMT

deadlocks verhindert. Jedoch können wir andere Situationen identifizieren, in denen ein Live-

lock eintritt, auch wenn eine GPU mit Independent Thread Scheduling verwendet wird. Um

dieses Problem zu beheben, stellen wir eine Technik vor, mit der entsprechende Livelocks ver-

hindert werden können.

Durch Evaluierung verschiedener Synchronisationstechniken sind wir in der Lage zu zeigen,

dass mit der Auswahl einer für die Situation angemessenen Synchronisationstechnik, die Leis-

tung um das 3,4 fache verbessert werden kann. Im Allgemeinen hängt die Leistungsfähigkeit

der Synchronisationstechnik von der jeweiligen Aufgabe ab. Wir zeigen, dass keine Synchro-

nisationstechnik in allen Situationen besser als alle anderen ist. Schließlich untersuchen wir

die Granularität von Locks und geben an, in welchen Situation welche Granularität gewählt

werden sollte.
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1 Introduction

Concurrent access to the same data structure exposes its internal consistency. Therefore, it

becomes necessary to implement coordination among concurrent threads. This coordination

among threads is called synchronization. But it does not suffice to just ensure correctness by

protecting the consistency of a given data structure. Moreover, synchronization needs to be

efficient. Otherwise, the performance impact of synchronization would cancel out the over-

all purpose of increasing concurrent access. And with thousands of concurrent threads on a

modern Graphical Processing Unit (GPU), efficient synchronization is especially challenging.

In this chapter we briefly explain why it has become necessary to scale computer systems (e.g.

database systems) to many-core architectures and we state why we chose the GPU as a target

architecture for our investigation. Next, we point out why efficient synchronization is required.

Finally, we present our contributions and outline the remaining parts of this work.

1.1 Many-Core Hardware Architectures and the GPU

In the past, the exponentially increasing performance of computing systems was achieved by a

combination of reducing transistor sizes and improvements in hardware architecture, compiler

technology and algorithms [1]. Half of those gains were achieved by higher clock frequen-

cies [17]. However, power density constraints finally resulted in stagnating clock frequencies.

As a consequence, we observed a general interest in multi-threaded programming [32] and in

finding more efficient hardware architectures [1]. Although it is possible to exploit hardware

specialization in order to achieve higher efficiency, an ideal architecture should also support a

wide range of programs [1]. GPUs are one example for such a specialized hardware architec-

ture, which differs greatly from the traditional architecture implemented on Central Processing
Units (CPUs). While CPUs optimize latency, GPUs are focusing on throughput. Figure 1.1 illus-

trates the different design philosophies of CPUs and GPUs. CPUs are designed for optimizing

sequential code. Therefore, they spend a lot of their chip area on sophisticated control logic

and large caches [19]. In contrast, GPUs spend the vast majority of their chip area on process-
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Chapter 1. Introduction

ing elements [19]. As a result, many throughput oriented workloads could achieve substantial

speed-ups when implemented on a GPU [20][24].

Figure 1.1: Different Design Philosophies on CPUs and GPUs [19].

In order to obtain the desired flexibility needed to support a wide range of applications, the

GPU has transitioned from a fixed-function graphic pipeline to a programmable parallel pro-

cessor which supports a Turing Complete programming model [1][22]. One recent hardware

feature, which underscores this development, is Independent Thread Scheduling (ITS) . ITS was

introduced with the Volta microarchitecture [26]. It changes how threads are scheduled and

increases programmability.

The ever-increasing flexibility of GPUs enabled the acceleration of non-graphics applications.

Today, accelerating read-heavy Online Analytical Processing (OLAP) workloads is a highly active

research field [4][8][9][16]. But other parts of a database system could also benefit from the

computing power of modern GPUs. He and Yu have shown that even write-heavy Online
Transactional Processing (OLTP) workloads could benefit from GPUs [16]. Finally, the growing

interest in supporting dynamic (mutable) data structures, that are built, queried and updated

on the GPU [5][6], indicates a more general applicability of GPUs for database systems.

1.2 Efficient Synchronization

One major impediment in scaling database systems to highly concurrent architectures such as

GPUs is synchronization [10][21]. The capability of modern GPUs to support thousands of con-

current threads contributes to the importance of efficient synchronization. Coordination among

threads imposes an additional coordination overhead. But it is of crucial importance that this

overhead does not cancel out the performance improvements gained by allowing concurrent

access. Thus, synchronization needs to be efficient.

Furthermore, correct and efficient synchronization depends highly on the underlying hard-

2



1.3. Contributions

ware. In order to accelerate database systems with GPUs we need to understand how synchro-

nization behaves on this particular architecture. The same reasoning applies for implementing

mutable data structures on such a highly concurrent architecture.

1.3 Contributions

In this thesis, we investigate common low-level synchronization primitives on GPUs with ITS.

Thereby, we explore how the hardware handles control flow. This knowledge helps us to im-

plement different synchronization primitives on the GPU. Finally, we investigate the presented

lock variations in respect to their scalability. In summary, our contributions are:

Livelock. Although Independent Thread Scheduling prevents SIMT deadlocks, we

identified a new livelock condition.

Architectural Details. We investigate the architectural details of GPUs and how they

affect the implementation of common synchronization techniques. In particular, how

to prevent the aforementioned livelock condition

Study of Synchronization. Study of different synchronization primitives on GPUs

with ITS. Our Investigation explains why certain synchronization performs better than

others on GPUs. Furthermore, our result can be used to assess the cost of synchroniza-

tion and help to identify suitable synchronization primitives.

3



Chapter 1. Introduction

1.4 Outline

First, in chapter 2 we separate the terms locking and latching. Furthermore, we summarize the

formal requirements of synchronization and present the most important architectural details of

modern GPUs which directly affect the implementation of synchronization primitives.

In chapter 3 we investigate ITS. We show that ITS avoids SIMT deadlocks. However, we also

present a scenario in which a livelock condition could occur despite of ITS. Finally, we demon-

strate how such a livelock could be prevented.

The synchronization primitives we are investigating and their implementation on GPUs are

shown in chapter 4. We differentiate between centralized spin locks and queue based locks.

In chapter 5 we evaluate the previously presented synchronization primitives with three dis-

tinct benchmarks. In the Counter-Benchmark concurrent threads compete to increment a single

counter object. Next, we investigate a more realistic workload: building a hash table. Finally,

we use a sorted list as a case study to evaluate our lock variants with lock coupling and com-

pare fine-grained locking with coarse-grained locking.

We present related work in chapter 6.

We summarize the results of this thesis in chapter 7.
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2 Background

In the previous chapter we pointed out why efficient synchronization is important and why

we are investigating synchronization on GPUs with ITS. In this chapter we summarize the

challenges that need to be addressed in order to implement efficient synchronization on GPUs.

The following chapters will build on the presented insights.

We structured this chapter as follows: First, we give a precise definition of the term locking

and how we are using the term throughout this work. Next, we present the requirements

of a correct implementation of synchronization. Finally, we summarize the most important

architectural details of modern GPUs.

2.1 Defining Locking

Locking means different things to two different research communities [15]: On the one hand,

it could mean high-level concurrency control. And on the other hand, locking could mean

low-level data structure synchronization. In contrast to high-level concurrency control, which

protects the database content by separating transactions, low-level data structure synchroniza-

tion protects the data structure by separating multiple concurrent threads. The mechanisms to

achieve high-level concurrency control and the mechanisms for low-level data structure syn-

chronization are different. The literature on operating systems and programming environ-

ments usually uses the term lock for a mechanism that accomplishes low-level data structure

synchronization. In order to distinguish between the two mentioned purposes the database re-

search community uses two different terms. It is common to use latch in the sense of low-level

synchronization and lock as a mechanism for high-level concurrency control. Nevertheless,

similar to Leis et al. [21] we are using the term lock instead of latch, since we focus on low-

level data structure synchronization and hence have no need to differentiate between low-level

synchronization and high-level concurrency control.
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Chapter 2. Background

2.2 Synchronization and its Requirements

The purpose of synchronization is to prevent all incorrect interleavings of instructions. This

can be achieved by ensuring that a specified sequence of instructions appears to execute as a

single, indivisible unit. The simplest method to implement this notion of atomicity is to force

different threads to execute their operations one at a time (mutual exclusion) [30].

In this section we formally define linearizability and explain how this definition relates to cor-

rect synchronization. Furthermore, we provide a brief introduction to safety and liveness; two

requirements for correct synchronization.

2.2.1 Linearizability

Linearizability is a consistency condition, and as such it formalizes the correctness of a given

execution. Moreover, linearizability of a system as a whole depends only on the linearizability

of its parts [28][30]. In order to define linearizability we introduce some terms in accordance

with Raynal [28]:

Processes and Operations. Given a finite set of processes P := {p1, ..., pn}. Each pi ∈ P is

accessing concurrent objects by executing operations on them. The execution of an operation

is modeled by its invocation and its response event. Let pi ∈ P, the invocation of an operation

op with parameters arg on an object X by process pi, is denoted with: inv[X.op(arg) by pi]. The

response with return value ret is denoted with: resp[X.op() → ret by pi]. Depending on the

context, it is possible to omit the name of the object as well as the name of the invoking process.

Each process is assumed to be sequential: it executes one operation at a time.

Definition 1. Let P := {p1, ..., pn} be a finite set of processes:

1. A history Ĥ = (H,<H) is a sequence of invocation and reply events, where H is a finite set of
events generated by p1, ..., pn and <H is a total order on those events.

2. The local history of pi (pi ∈ P), denoted with Ĥ|pi, is the sub-sequence of Ĥ containing only
those events generated by pi.

3. Two histories Ĥ and Ĥ′ are said to be equivalent if they have the same local histories: for each
pi ∈ P, Ĥ|pi = Ĥ′|pi.

A history Ĥ induces an irreflexive partial order on its operations:

6



2.2. Synchronization and its Requirements

Definition 2. Let op and op’ be two operations and Ĥ = (H,<H) be a history.

1. we define the partial order→H:

(op→H op′) := (resp[op] <H inv[op′])

2. Two operations op and op’ are said to be concurrent if neither

resp[op] <H inv[op′]

nor

resp[op′] <H inv[op]

Sequential specification. Objects are defined by a sequential specification which states how the

objects must behave when accessed sequentially. Typically, each operation on a given object is

therefore associated with preconditions and postconditions. Furthermore, each operation must

preserve certain invariants.

Definition 3. Given a finite set of processes P := {p1, ..., pn}

1. A history is sequential if it has no concurrent operations.

2. A sequential history Ŝ is legal if, for each object X, the sub-sequence of Ŝ that consists only of
events involving X is compliant with the sequential specification of X.

After we have introduced some important terms in Definition 1-3 we are now able to give a

formal definition of linearizability:

Definition 4. A history Ĥ is linearizable if there is a history Ŝ such that:

1. Ĥ and Ŝ are equivalent

2. Ŝ is sequential and legal

3. →H⊆→S

Each execution of a concurrent program results in a specific history. We can check if a given

history is linearizable in accordance with the given definition. But correct synchronization

needs to ensure that all histories that can be generated are linearizable. In the next two sections

we explain how this can be achieved.

7



Chapter 2. Background

2.2.2 Safety

A sequential implementation is safe, if each operation on an object X is compliant with the

sequential specification of X [30]. If we want to allow concurrent access on the same object,

we have to extend the implementation to allow concurrent operation calls. Safety requires

atomicity and deadlock freedom.

Atomicity. Each operation should appear to occur atomically [30]. Only if the methods of an

object appear to occur atomically, it is properly synchronized. In this sense synchronization

means to achieve the appearance of a total order on high-level operations. Furthermore, the or-

dering must be consistent with the sequential program of each participating process. If such a

total order exists, each operation occurred atomically [30]. Linearizability is one way to formal-

ize atomicity. Given a history Ĥ of an execution, we are able to evaluate if Ĥ is linearizable, but

the definition of linearizability does not formulate how to prevent non-linearizable executions.

One method to actually achieve linearizability is by using a single global lock. All participating

threads1 need to acquire the lock before they can invoke operations on any shared object. After

a thread has completed the critical section it releases the lock and another thread can proceed.

With this protocol only sequential histories can be produced. We remind ourselves that a se-

quential history has per definition no concurrent operations (see Definition 3). We call such a

locking scheme coarse-grained locking. But it is possible to increase the potential concurrency,

or to allow concurrency at all, by adopting fine-grained locking. For instance, it can be achieved

by protecting each list element with a separate lock (fine-grained locking) instead of protecting

the whole list with a single lock (coarse-grained locking). It has been shown that linearizability

can be ensured on a concurrent sorted list by a fine-grained locking protocol in which each

thread holds at most two locks at a time [7]. This protocol is known as lock coupling. First,

a thread needs to acquire the lock which is associated with the first element of the list (head).

After acquiring the first lock a traversing thread proceeds as follows:

1. Acquire the lock of the successor

2. Release the lock of the current node

3. Successor node becomes current node

4. Repeat if necessary

This protocol ensures that a thread is never overtaken by another thread during its traversal
1 We are describing how correct synchronization is actually achieved and therefore we are not talking about abstract

processes anymore.
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2.2. Synchronization and its Requirements

of the list. Similar locking protocols are commonly used in concurrent trees and other pointer

based data structures [30].

Deadlock. One important safety property on concurrent objects is deadlock freedom. Espe-

cially with fine-grained locking it becomes necessary to ensure deadlock freedom. As an exam-

ple, let us assume, we have a locking protocol similar to the above mentioned lock coupling.

If we allow threads to traverse a doubly-linked list from both ends, a deadlock might occur. If

we assume the following situation:

• Thread A and thread B are holding a lock on neighbouring nodes

• A is traversing the list from head to tail

• B is traversing the list from tail to head

In the given situation each thread will only release its lock, if it succeeds in acquiring the lock

currently held by the other one. As a consequence a deadlock prevents both threads from

continuing their execution.

In general, a deadlock occurs when four conditions are simultaneously met [30]:

1. Exclusive use. Threads access non-shareable resources (e.g. a node within a list).

2. Hold and wait. Threads wait for unavailable resources while continuing to hold re-

sources they have already acquired.

3. Irrevocability. It is not possible to revoke the access to a resource which was already

granted.

4. Circularity. A circular chain of threads in which each thread is holding a resource needed

by a previous one. For instance, thread A wants to acquire a lock held by thread B, while

thread B is trying to acquire the lock held by thread A.

A common strategy to prevent deadlocks is to break the circularity condition by imposing a

static order on locks and by requiring that every operation acquires its locks according to that

static order [30].

9



Chapter 2. Background

2.2.3 Liveness

Liveness ensures that each operation will finish eventually. In other words, liveness guarantees

forward progress. Forward progress is related to the following definition:

Definition 5. According to Scott [30] an operation is said to be lock free if some thread is guaranteed
to make progress: the operation is completed in some bounded number of steps

We say a livelock occurs, if the systems as a whole is prevented from making progress. If a

operation is not lock free, a livelock might occur.

Lock-based algorithms, the topic of this investigation, are inherently blocking. Each thread

which tries to acquire an already taken lock is unable to proceed and has to wait until the lock

is released [30]. Livelock freedom requires that each thread that acquires a lock releases this

particular lock eventually. Therefore we must ensure that each critical section is free of infinite

loops. However, on GPUs this is not sufficient. As we describe in chapter 2.3, livelock freedom

is linked to how the hardware handles control flow.

2.3 GPU Hardware Architecture

In the previous section we defined linearizability and described how to synchronize concurrent

accesses to shared objects. In this section we summarize some particularly important architec-

tural details of GPUs. They directly affect the previously defined correctness and the perfor-

mance of synchronization. We start with a general overview of the hardware and programming

model. Next, we describe how control flow is handled on GPUs. Finally, we summarize issues

related to cache coherence and memory consistency and present the available atomic instruc-

tions used to implement synchronization.

2.3.1 General Overview

The programming model organizes the threads which are executing a program on the GPU

hierarchically. Multiple threads are grouped together in a thread-block and multiple threads-

blocks compose a grid. When invoking a GPU program (kernel), the programmer specifies the

number of threads per thread-block (block size) and the number of thread-blocks per grid (grid

size).
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2.3. GPU Hardware Architecture

GPUs are subdivided in several Streaming Multiprocessors (SMs) shown in Figure 2.1. All threads

within the same thread-block are mapped onto the same SM. Threads of the same thread-block

have access to a manually managed cache called shared memory which is associated with the

SM. All threads have access to the same global memory.

All threads within a thread-block are grouped by the hardware in warps. Such a warp typ-

ically consists of 32 threads. The hardware manages, schedules and executes warps and not

individual threads. Threads within a warp share a common instruction fetch and instruction

decode unit (front-end). The execution unit is split in multiple lanes (back-end): each lane cor-

responds to a single thread. In effect, this hardware architecture allows individual threads to

execute a single instruction on multiple data points (SIMD). In contrast to SIMD instructions on

CPUs, the GPU hardware abstracts away the underlying SIMD back-end. Therefore, NVIDIA

labels the hardware architecture as Single Instruction Multiple Thread (SIMT) architecture [25].

NVIDIA claims that for “[...] the purposes of correctness, the programmer can essentially ig-

nore the SIMT behavior [...]” [25]. But as we will point out in chapter 3, current GPUs cannot

live up to this claim, even after Independent Thread Scheduling has been introduced.

Figure 2.1: Streaming Multiprocessor [26].
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2.3.2 Arbitrary Control Flow

The programming model on GPUs abstracts away the underlying SIMD hardware. This be-

comes especially apparent if we consider how control flow is handled by the underlying hard-

ware. We present two common approaches: stack-based and stack-less reconvergence.

2.3.2.1 Stack-based Branch Reconvergence

On pre-volta architectures the SIMT model is implemented by stack-based masking of execu-

tion [12]. This allows different threads within a warp to take different control flow paths (thread

divergence). This flexibility is achieved by serializing the execution while masking the inactive

threads. Masking inactive threads reduces the SIMD utilization and potentially degrades per-

formance. But SIMD utilization is regained by forcing divergent threads to reconverge as soon

as possible [12]. A limitation of this implementation is that it creates implicit scheduling con-

straints for diverging threads: threads that need to communicate must be mapped to different

warps. If the programmer fails to consider this limitation, deadlocks will occur.

Listing 2.1 shows how mutual exclusion could be achieved by a simple spin lock. On GPUs

with stack-based execution masking this code would cause a deadlock if threads from the same

warp are competing against each other to enter the critical section. This deadlock occurs if

thread A and thread B are grouped together into the same warp and are trying to execute the

critical section. The atomicCAS instruction on line 1 ensures that only one thread is able to

acquire the lock. If thread A acquires the lock, the hardware will force thread A to wait on line

2 for thread B in order to improve SIMD utilization. As a result thread B will spin on line 1

forever since thread A is not able to execute the unlock operation on line 7. Such a case where

forward progress of a diverged thread is prevented is known as SIMT deadlock2 [12].

2 In this situation the system as a whole is prevented from making progress: a livelock condition has been reached.
Nevertheless, we decided to adopt the already established terminology here.
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Listing 2.1: Deadlock due to diverging threads.

1 while(atomicCAS(&(data->lock),0,1) != 0);

2 __threadfence();

3

4 //critical section

5

6 __threadfence();

7 atomicExch(&(data->lock),0);

2.3.2.2 Stack-less Branch Reconvergence

NVIDIA addressed the possibility of a SIMT deadlock by changing the implementation of

how control flow is handled by the hardware. Beginning with the Volta microarchitecture, all

NVIDIA GPUs have a new hardware feature called Independent Thread Scheduling, which

is an integral part of our work. In this section we summarize the description of this fea-

ture [2][11][26]:

As a first step, the stack is replaced by convergence barriers. Each warp maintains various data

fields to manage the execution of arbitrary control flow. For instance, the Barrier Participation

Mask is used to track which threads within a warp are participating in a given convergence

barrier. In order to allow nested control flow, there may be more than one barrier participation

mask for any given warp. During execution, threads with the same convergence barrier will

wait for each other. To achieve this, the Barrier State tracks which threads have arrived at a

given convergence barrier. Thread divergence may occur when the warp is executing a branch

instruction. If this happens, the scheduler will select a warp-split (subset of threads with a

common program counter) for execution. The main advantage of the convergence barrier im-

plementation over a stack-based implementation is that the scheduler is in principle free to

switch between different warp-splits. This enables forward progress even in situations which

would lead to a SIMT deadlock on a stack-based implementation.

2.3.3 Cache Coherence

On a shared-memory parallel system, data in upper levels of the memory hierarchy may not

be consistent with lower levels. A cache-coherent system is one in which changes to data are

guaranteed to become visible to all threads and changes to the same location are seen in the
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same order by all threads [30].

Each SM has it own L1 cache which is unified with shared memory and all SMs share the same

L2 cache. But on NVIDIA GPUs writes to global memory are not kept coherent per default [27].

In order to implement correct synchronization we need to either disable the L1 completely [31]

or annotate individual memory accesses with cache operators via inline assembly. In our study

we use both approaches: disabling of the L1 cache in chapter 3 and annotating of individual

accesses in chapter 4.

On CPUs, some synchronization primitives perform better than others because they are avoid-

ing frequent cache invalidations. Since GPUs do not implement cache coherence this advantage

does not apply. Instead, we need to investigate how different synchronization primitives be-

have and explain why.

2.3.4 Memory Consistency

GPUs [3] and other modern multicore-processors [17] implement a relaxed memory model.

This means, that multiple memory operations are not sequentially consistent: Accesses by

different threads, or to different locations by the same threads, occur out-of-order from the

perspective of threads on other cores. When consistency is required, special synchronization

instructions are necessary to ensure a specific ordering of memory operations. Inserting syn-

chronization instructions is difficult. For instance Alglave et al. [3] found missing fences in a

variety of peer-reviewed publications and even vendor guides.

To illustrate the issue, we adapted Figure 2.2 from Scott [30]. If we assume that x and y are

initially set to zero, it is possible on a machine with a relaxed memory model that both i and

j will be set to zero. We observe such a behaviour if the writes to x and y are delayed. In

this case both threads read a zero. We say the reads bypass the writes. It appears that the

second instruction of each thread is executed before the first of the other threads. This ordering

combined with the program order results in the ordering loop shown in Figure 2.2. As a result,

the state held in memory is inconsistent.

2.3.5 Atomic Instructions

Atomic instructions are one of the main building blocks for implementing synchronization

algorithms. These instructions are able to read and modify a memory location in a single atomic
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Figure 2.2: Ordering Loop.

operation. The signatures of the most important atomic instructions for our investigation are

shown in Listing 2.2.

Listing 2.2: Atomic Instructions.

1 int atomicAdd(int* address, int val);

2

3 int atomicExch(int* address, int val);

4

5 int atomicCAS(int* address, int compare, int val);

The semantics of these instructions are described in the CUDA Programming Guide [25]:

• atomicAdd: Reads an integer old at memory location address, computes old + val and

stores the result at the same memory location. These operations are performed in one

atomic transaction. The return value of atomicAdd is old.

• atomicExch: Reads an integer old at memory location address, and stores val at the same

memory location. These operations are performed in one atomic transaction. The return

value of atomicExch is old.

• atomicCAS: Reads an integer old at memory location address. If old equals compare, val will

be stored at the same memory location. These operations are performed in one atomic

transaction. The return value of atomicCAS is old.
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3 Independent Thread Scheduling

In the previous chapter we presented how a GPU manages control flow and why SIMT dead-

locks occur on GPUs with the traditional stack-based reconvergence approach. In this chapter

we analyze Independent Thread Scheduling and evaluate its utility.

3.1 SIMT Deadlock

First, we consider the simple GPU program shown in Listing 3.1. All concurrent threads access

the same Counter object (Listing 3.2) through the pointer c. It therefore becomes necessary to

implement coordination among them. The synchronization mechanism we use is a simple spin

lock. Within the critical section we are incrementing the counter (line 6 Listing 3.1).

In Chapter 2 we pointed out that, if we execute this kernel, a SIMT deadlock will occur on all

GPUs without ITS. To confirm that ITS actually prevents SIMT deadlock from occurring we

tested the kernel on a GPU with a Turing microarchitecture. As the immediate successor of the

Volta microarchitecture, it provides ITS. We address the lack of cache coherence by deactivating

the L1 cache completely by using the following compiler option:

-Xptxas -dlcm=cg

Furthermore, the hardware will only make use of ITS, if we compile the given kernel with the

following additional compiler option:

-arch=sm_75

This option instructs the compiler to make use of all features available on the Turing microar-

chitecture, including ITS.

We compiled two executable programs: one which makes use of ITS, while the other does
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Listing 3.1: Simple Spin Lock.

1 __global__ void increment_counter(Counter* c) {
2 while(atomicCAS(&(c->lock),0,1) != 0);
3 __threadfence();
4

5 //critical section
6 c->counter++;
7

8 __threadfence();
9 atomicExch(&(c->lock),0);

10 }

Listing 3.2: Counter object.

1 struct Counter {
2 int lock;
3 int counter;
4 }

not. We ran both programs on the same GPU. The program which makes use of Independent

Thread Scheduling produces the correct result. The other program gets stuck in a deadlock.

We conclude that Independent Thread Scheduling does increase programmability by abstract-

ing away the actual thread scheduling and thus frees the programmer from considering SIMT

deadlocks.

3.2 Livelock

In this section we present a condition in which the systems as a whole is prevented from making

forward progress (livelock) despite Independent Thread Scheduling.

3.2.1 Problem

We observed that in situations which are similar to the pseudo code shown in Listing 3.3, the

kernel does not terminate. We say a livelock occurs. Moreover, the livelock occurs even on a

GPU with ITS.
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Listing 3.3: Livelock.

1 void livelock( int* flag) {
2 while (true) {
3 if (flag[THREAD_ID] != 0) {
4 //BB1
5 } else {
6 //BB2
7 return;
8 }
9 }

10

11 void run() {
12 int flag = {1, 0, 0, 0};
13 livelock( flag );
14

15 if (THREAD_ID < 3) flag[THREAD_ID + 1] = 1;
16 }

3.2.2 Explanation and Solution

To understand the situation it is important to consider, that threads within the same warp share

the same instruction fetch and instruction decode unit. Thus, despite the naming, Independent

Thread Scheduling does not mean that the hardware schedules individual threads. Threads

are still scheduled and executed together in warps. All threads are executing every instruction,

even if the control flow diverges. If control flow diverges, inactive threads are masked and

therefore their results within the execution stage are not written back to the register file.

In general, an If -branch instruction, results in a warp split. Some threads will execute the

if -block while others will execute the else-block. This pattern is shown in Listing 3.3 on line

3-8. But in Listing 3.3 the control flow is wrapped in an infinite loop. Only if the else-block is

executed, a thread exits the while loop (line 7). Furthermore the condition on line 3 depends

on the execution of the else-block. Only if a thread exits at line 7, the condition will change

eventually (line 15). Due to the outer while loop, the hardware chooses to schedule the threads

which are executing the if -block repeatedly. Thus, the else-block will never be executed. The

program reaches a livelock condition. To prevent such a livelock condition we need to force the

hardware to schedule those threads which are executing the else-block.

If we consider Listing 3.4 and Listing 3.5. Figure 3.1 shows a possible execution, where threads

t1 and t3 evaluate the condition to true, while t0 and t4 evaluate the condition to false. The

execution shown on the left, corresponds to Listing 3.4 and the execution on the rights shows

the execution of Listing 3.5. We force the hardware to switch to the else-block by issuing a
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Listing 3.4: Simple Control Flow Example with syncwarp.

1 if (/*Condition*/) {
2 //BB1.1
3 //BB1.2
4 } else {
5 //BB2.1
6 //BB2.2
7 }

Listing 3.5: Simple Control Flow Example without syncwarp.

1 if (/*Condition*/) {
2 //BB1.1
3 __syncwarp();
4 //BB1.2
5 } else {
6 //BB2.1
7 __syncwarp();
8 //BB2.2
9 }

syncwarp instruction on line 3 and line 7 in Listing 3.5. This instruction forces the warp splits

to wait for each other. First, BB1.1 is executed and the syncwarp instruction forces the hardware

to schedule the else-block. After BB2.1 has been executed the syncwarp instruction on line 7 has

the effect that the warp split which is executing the if -block is in principle able to proceed. But

the hardware decides to continue with BB2.2 until the reconvergence point is reached. When

the warp split arrives at the reconvergence point, the scheduler switches back to the other warp

split. Finally, both warp splits converge and are executing BB3 together.

The same idea of forcing the hardware to switch to the other warp split can be applied to pre-

vent livelock conditions. Therefore, we need to ensure that a syncwarp instruction is issued by

all threads within the warp. The result is shown Listing 3.6: we inserted a syncwarp instruction

on line 4 and line 17.

3.2.3 Discussion

By manipulating the scheduling of basic blocks, we are able to prevent livelock conditions.

The syncwarp instruction is only available on GPUs with Independent Thread Scheduling. The
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Figure 3.1: Warp Scheduling. On the left without a syncwarp instruction. On the right with a syncwarp
instruction.

behaviour of syncwarp is undefined1 on all Pre-Volta architectures the GPUs without Indepen-

dent Thread Scheduling serialize the execution of control flow and thus it is not possible for

individual warp-splits to wait for each other.

3.3 Summary

Independent Thread Scheduling solves the problem of SIMT deadlocks. Nevertheless, a live-

lock condition could still occur. It is possible to prevent livelock conditions by manipulating

the scheduling of basic blocks. But it is necessary to understand how control flow is actually

implemented on the GPU. In summary, even for the purposes of correctness, the programmer

cannot ignore the SIMT behavior, contrary to the NVIDIA programming guide [25].

1 In our tests the instruction was simply ignored.
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Listing 3.6: Livelock Prevention: syncwarp.

1 void livelock( int* flag) {
2 while (true) {
3 if (flag[THREAD_ID] != 0) {
4 __syncwarp();
5 //BB1
6 } else {
7 //BB2
8 return;
9 }

10 }
11

12 void run() {
13 int flag = {1, 0, 0, 0};
14 livelock( flag );
15

16 if (THREAD_ID < 3) flag[THREAD_ID + 1] = 1;
17 __syncwarp();
18 }
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4 Synchronization Primitives: Spin Locks

Efficient synchronization needs to be scalable. To achieve scalability an understanding of the

underlying hardware is required. After having gained insight into the hardware architecture

of modern GPUs, we are able to present well-known lock variations and show how they can be

implemented on GPUs. In this chapter we set the scope for the following evaluation.

Locks guarantee atomicity of operations via mutual exclusion. In general, there are two al-

ternatives to implement mutual exclusion. A thread which failed to acquire a needed lock

could either retry until it succeeds (busy waiting) or suspend its execution for a while and retry

later. The second alternative involves direct control over the scheduling process. On a GPU we

do not have an operating system and we cannot directly control the scheduling of particular

threads. Therefore, only busy waiting can be used.

We structure this chapter in two parts: Centralized Spin Locks and Queued Spin Locks.

4.1 Centralized Spin Locks

The following locks make use of the atomic instructions supported on GPUs. During lock

acquisition all competing threads are spinning on the same central location.

4.1.1 Test-And-Set (TAS) Lock

The TAS lock implementation can be seen as a baseline. This lock is the default synchronization

primitives and is commonly used (e.g. locking in NVIDIA’s CUDA by Example [29]). The

signature of the TAS lock implementation is shown in Listing 4.1. The constructor (line 4)

allocates memory in the global memory of the GPU to hold an integer. The pointer to this

allocated memory is stored in mutex. The destructor on line 5 is responsible for reclaiming the

memory. The value to which mutex points indicates if a thread is currently holding the lock.
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Listing 4.1: TAS Lock Signature.

1 struct TAS_Lock {

2 int *mutex;

3

4 TAS_Lock( void );

5 ~TAS_Lock( void );

6

7 __device__ void lock( void );

8 __device__ void unlock( void );

9 };

The lock method in Listing 4.2 calls the atomicCAS instruction in a loop (line 2). If no thread

is currently holding the lock, the atomicCAS will store a 1 at mutex, return a 0 and therefore

proceed with line 2. Otherwise, another thread is currently holding the lock, the atomicCAS
will not change the value at mutex, return a one and has to repeat the atomicCAS instruction

until it eventually succeeds.

Listing 4.2: TAS Lock Operation.

1 __device__ void lock( void ) {

2 while( atomicCAS( mutex, 0, 1 ) != 0 );

3 __threadfence();

4 }

The memory fence instruction on line 3 ensures that the lock is held before the thread enters

the critical section. This is necessary due to the weak memory consistency.

The unlock operation shown in Listing 4.3 writes a zero at mutex. Similar to the lock operation,

the memory fence instruction on line 2 ensures that all instructions within the critical section

have completed before the lock is released.

Listing 4.3: TAS/TTAS Unlock Operation.

1 __device__ void unlock( void ) {

2 __threadfence();

3 atomicExch( mutex, 0 );

4 }
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4.1.2 Test-and-Test-And-Set (TTAS) Lock

The TTAS lock differs from the TAS lock only in the implementation of the lock method (see

Listing 4.4). On a CPU TTAS locks perform significantly better than TAS locks. Because they

minimize coherence traffic by avoiding frequent cache invalidations [18]. However, as we point

out in chapter 2 GPUs do not implement cache coherence. Thus, it is interesting to investigate

if the performance of TTAS differs from TAS on GPUs.

On line 3 we are making use of a special instruction to load the lock value directly from global

memory, by-passing the L1 cache. We achieved this through inline assembly wrapped into a

inline function. The function is shown in Listing 4.5. In line 3 of Listing 4.5 we annotate the

load instruction with the .cg cache operator. Any ld.cg instruction loads from global memory,

by-passing the L1 cache [27]. In this regard a normal memory access differs from an atomic

one. Due to their implementation atomic instruction are by-passing the L1 cache per default.

We load the lock value directly from global memory, because other threads may have changed

the value and due to the lack of cache coherence the value in the L1 could be out-of-date.

It is important to note, that in this lock variant the atomicCAS instruction is not “spinning”.

Instead the lock “spins” on line 3. Only if a “normal” read of the lock value suggests that we

have a chance to acquire the lock, the lock is trying to do so (line 4).

Listing 4.4: TTAS Lock Operation.

1 __device__ void lock( void ) {

2 while (true) {

3 while (ld_gbl_cg((int *) mutex)) {}

4 if (!(atomicCAS(mutex, 0, 1) != 0)){

5 __threadfence();

6 return;

7 }

8 }

9 }
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Listing 4.5: Global Memory Load.

1 __device__ __inline__ double ld_gbl_cg(const int *addr) {
2 int return_value;
3 asm volatile ("ld.global.cg.s32 %0, [%1];" : "=r"(return_value) : "l"(

addr));
4 return return_value;
5 }

4.1.3 Ticket Lock

A ticket lock tracks two values: current and next. Every time a thread wants to acquire the lock,

it will read the value of next while incrementing next by one. The value read by the thread is

called its TICKET ID. The thread waits until TICKET ID is equal to current. If a thread exits the

critical section, the value at current will be incremented and the next waiting thread is able to

proceed.

The signature of the ticket lock is shown in Listing 4.6. Listing 4.7 shows the implementation of

the corresponding lock method. On line 2 the thread receives its TICKET ID. The thread checks

repeatedly if it is allowed to enter the critical section (line 4). In order to ensure that the value

read at current is not out-of-date, the thread performs a L1 by-passing load (Listing 4.5) similar

to the TTAS lock.

Listing 4.6: Ticket Lock Signature.

1 struct TICKET_Lock {

2 int *current;

3 int *next;

4

5 TICKET_Lock( void );

6 ~TICKET_Lock( void );

7

8 __device__ void lock( void );

9 __device__ void unlock( void );

10 };

A branch instruction might result in a warp split. If a warp split occurs, a GPU with Indepen-

dent Thread Scheduling will be able to schedule any of them. But if the hardware decides to

schedule only the warp split whose threads are not authorized to access the critical section, a

livelock will occur. We prevent the livelock by forcing the hardware to schedule the other warp
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Listing 4.7: Ticket Lock Operation.

1 __device__ void lock( void ) {
2 unsigned own_ticket = atomicAdd(next, 1 );
3 while (true) {
4 if (own_ticket != ld_gbl_cg(current)) {
5 __syncwarp();
6 } else {
7 __threadfence();
8 return;
9 }

10 }
11 }

split. We can do so by executing a syncwarp instruction (line 5). This instruction forces the

warp split to wait until the other warp split has executed a corresponding syncwarp instruction

as well. Thus the following executions are possible:

1. No thread within the warp is authorized to access the critical section. All threads are

executing the syncwarp instruction and the warp as a whole can check again if any thread

is authorized to enter the critical section.

2. Because threads can operate on different data points (e.g. a different lock), it is possi-

ble that multiple threads are authorized to enter the critical section. After the threads

which are not allowed to enter the critical section execute the syncwarp instruction, the

hardware immediately schedules those threads which are authorized to enter the criti-

cal section. These threads execute the syncwarp instruction within the unlock operation

(Listing 4.8). The execution switches back to those threads which still have to execute the

critical section.

3. All threads are allowed to enter the critical sections. All threads are executing the syncwarp
instruction within the unlock operation.

Ticket locks have another important property: they guarantee fairness. With TAS and TTAS it

is possible that a thread bypasses another thread that has already been waiting for a long time.

The values current and next could overflow, but such a rollover is harmless as long as the max-

imum number of threads is less than the largest representable integer.
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Listing 4.8: Ticket Unlock Operation.

1 __device__ void unlock( void ) {
2 __threadfence();
3 atomicAdd(current, 1 );
4 __syncwarp();
5 }

4.2 Queued Spin Locks

The basic idea behind queued spin locks is that all participating threads form a queue. Each

thread knows its successor. When a thread exits the critical section, it signals its successor to

enter the critical section.

4.2.1 MCS Lock

Listing 4.9: MCS Lock Signature.

1 struct QNode {
2 int waiting;
3 int next;
4 };
5

6 struct MCS_Lock {
7 int * tail;
8 int * head;
9 QNode * qNode;

10

11 MCS_lock( void );
12

13 ~MCS_lock( void );
14

15 __device__ void lock( void );
16 __device__ void unlock( void );
17 };

The signature of our implementation of the Mellor-Crummy and Scott (MCS) lock [23] and the

auxiliary data structure QNode is shown in Listing 4.9. The constructor allocates memory for

two integers on the GPU and stores their address in head and tail. Furthermore, we store a

pointer to an array of QNode elements. The QNode array is allocated separately, because we

need only one QNode array which is shared among all locks. During initialization we set this

pointer for each MCS lock. The size of the QNode array is determined by the number of con-
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current threads.

The lock operation of the MCS lock is presented in Listing 4.10. First, a locking thread must

determine its own QNode element. Therefore each thread accesses its THREAD ID (TID) on

line 2. The corresponding QNode element is identified on line 3. Because the TID is unique

we do not synchronize the accesses to the QNode array. We shift the TID by one, because the

first element within the QNode is used as a NULL element. Next, we build the list element (line

5-6). On line 8 we add the new list element to the queue. By using the atomicExch instruction

the thread identifies its predecessor. If the thread has no predecessor (prev is equal to 0), it

will enter the critical section immediately. Otherwise, the threads spins on waiting (line 12)

until it has been set to 0 by its predecessor. As a first instruction within the critical section, each

thread stores the used slot (line 15) in order to identify the correct list element during an unlock

operation.

Listing 4.10: MCS Lock Operation.

1 __device__ void lock() {
2 int tid = threadIdx.x + blockIdx.x * blockDim.x;
3 int slot = tid + 1;
4

5 qNode[slot].next = 0;
6 qNode[slot].waiting = 1;
7

8 int prev = atomicExch(tail, slot);
9

10 if(prev != 0) {
11 qNode[prev].next = slot;
12 while( atomicCAS(&qNode[slot].waiting, 0 , 0) != 0) {}
13 }
14 __threadfence();
15 *head=slot;
16 }

To unlock a MCS lock (Listing 4.11) the thread needs to restore its own position in the QNode
array. (line 2). Therefore this instruction precedes the memory fence on line 3 it is done within

the critical section. If the thread does not have a successor (succ is equal to 0), we need to

distinguish two possible situations:

1. If the thread is the last element in the queue, the value at tail must be equal to the threads

position in the QNode array and the thread has successfully unlocked the lock. This con-

dition is checked on line 9-10.

2. If the value at tail is not equal to the threads position in the QNode array, then the cur-
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Listing 4.11: MCS Unock Operation.

1 __device__ void lock() {
2 __device__ void unlock() {
3 int slot = *head;
4 __threadfence();
5

6 int succ = qNode[slot].next;
7

8 if (succ == 0) {
9 if (atomicCAS(tail, slot, 0) == slot) {

10 return;
11 }
12 while ( atomicCAS(&qNode[slot].next, 0, 0) == 0);
13 }
14 succ = qNode[slot].next;
15 qNode[succ].waiting = 0;
16 }
17 }

rent thread needs to wait (line 12). This situation occurs when another thread is already

queued behind the current thread (line 8 in Listing 4.10), but has not updated its prede-

cessor (line 11 in Listing 4.10).

At this point, if the thread has not already unlocked the MCS lock, it has been assured that

the current thread has an successor. To unlock the MCS lock the thread signals its successor to

proceed (line 15).

4.2.2 MCS2 Lock

With the MCS lock we are managing the lock by maintaining different lists. A single list element

is represented as a QNode. We are pre allocating all QNode elements in an array. If we want to

allow a single thread to hold multiple locks simultaneously, we need to modify the previously

presented MCS lock.

Instead of using a QNode array, MCS2 uses a QNode2 array shown in Listing 4.12. This array

is named qNode. To support n threads and two locks per thread we need (2n + 1) QNode2
elements. MCS2 differs from MCS mainly in how the position in the qNode is calculated. Instead

of shifting the TID by 1, we calculate the position pos as follows:

pos = 2 ∗ TID + 1
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After we calculated pos, it becomes necessary to check if qNode[pos] is already used by access-

ing active. If the element at pos is already being used the thread increments pos by one.

Listing 4.12: QNode2 Signature.

1 struct QNode2 {
2 int waiting;
3 int next;
4 int active
5 };

Finally, the thread needs to ensure that active is kept up-to-date by setting active to 1 before the

elements is queued and to 0 when it is dequeued.
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5 Evaluation

In chapter 4 we presented the synchronization primitives and how they could be implemented

on GPUs. In this chapter we evaluate them in different scenarios.

This investigation reveals insights into how the synchronization primitives behave on GPUs.

Moreover, we are able to compare different lock variants with each other.

In the first section we concentrate on the synchronization primitives and evaluate them under

two different scenarios. In the second section, we evaluate different synchronization primitives

using fine grained locking with lock coupling and compare fine grained locking against coarse

grained locking.

5.1 Hardware and Software Setup

Tabel 5.1 summarizes our hardware and software setup.

GPU
Model: GeForce RTX 2060
Architecture: Turing
Cuda Cores 1920
Number of Multiprocessors 30
Compute Capability 7.5
CUDA Driver Version 10.1
CUDA Runtime Version 10.1
Warp Size 32
Global Memory 6 GB

Table 5.1: Hardware & Software Setup.
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5.2 Synchronization Primitives

We begin our evaluation with a very easy-to-understand microbenchmark: the Counter mi-

crobenchmark. After that, we investigate the insertion into a hash table.

5.2.1 Counter

The objective behind the Counter microbenchmark is to isolate contention and investigate how

synchronization affects execution time. The GPU kernel operates on a shared array of Counter
objects. Each Counter objects is identified by its position within the array. The total number of

Counter objects is configurable. After the kernel is initialized, each thread uses its own thread

ID to access a shared buffer with work-items (work queue). Each work-item instructs a thread

to increment the counter of a specific Counter object by providing a counter ID.

We configured this microbenchmark to run on a single Counter object and with 32768 work-

items. Figures 5.1-5.4 show different synchronization primitives. Different grid size (1, 8, 16,

32) are plotted in each Figure. The grid size is synonymous to the number of thread blocks. On

the x-axis we scale the number of threads per thread block from 32 to 1024. The total number

of concurrent threads is calculated by the value at the x-axis times the grid size: We have at

least 32 and up to 32768 concurrent threads which are competing for the same Counter object.

The minimal and maximal value on the x-axis are not randomly chosen: 32 corresponds to the

warp size and 1024 is the maximum number of threads per thread block our GPU supports.

As a baseline we used the execution time of a single thread, because this shows the effect of

contention.

5.2.1.1 TAS Lock

We start our evaluation on the Counter benchmark with the TAS Lock (Figure 5.1). With a grid

size of 1 the TAS is able scale reasonably. Only if more than 384 threads are used, we observe

a departure from our baseline. With other grid sizes, we observe a rapid departure from the

baseline.
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Figure 5.1: TAS-lock: Incrementing counter with different grid sizes.

5.2.1.2 TTAS Lock

The plot of the TTAS lock in Figure 5.2 locks similar to the plot of the TAS lock shown in Figure

5.1. The only difference is that the effect of contention is slightly mitigated. It is important

to note the different scales used for TAS and TTAS. Another interesting aspect is that runtime

drops if we increase the number of threads from 32 to 64. Thus we are able to make use of the

increased concurrency.

5.2.1.3 Ticket Lock

The ticket lock presented in Figure 5.3 shows good scaling behavior for lower grid sizes. With

a grid size of 1 and 8 the runtime is unaffected by the number of thread per thread block.

Furthermore, we observe that the ticket lock is able to make use of increasing the grid size

from 1 to 8, if we compare the magenta colored line with the orange colored line. With higher

grid sizes the execution time increases. If more than 256 threads per thread block are used

(black/blue line). With less than 256 threads per thread block the tested grid sizes of 8, 16 and

32 perform equally and are able to make use of increased concurrency.
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Figure 5.2: TTAS lock: Incrementing counter with different grid sizes.
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Figure 5.3: Ticket lock: Incrementing counter with different grid sizes.

5.2.1.4 MCS Lock

Figure 5.4 shows that all tested grid sizes are affected by the number of threads per thread

block, similiar to TAS and TTAS. But in contrast to TAS and TTAS, the scaling behaviour of the

tested grid sizes is roughly the same. If less than 256 threads per thread block are used, MCS is

able to make use of higher grid sizes.
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Figure 5.4: MCS Lock: Incrementing counter with different grid sizes.

5.2.1.5 Discussion

In this section we evaluated different lock variants with regard to their scalability. For this

purpose we used the simplest possible task: incrementing a counter. We were able to validate

the correctness without great effort by comparing the end results.

We explain the huge difference between TAS and TTAS by the fact that TTAS is able to avoid

atomic instructions. Only if a non-atomic read suggests a chance to acquire the lock, TTAS

executes an atomic instruction. This correlation between scalability and the ability to avoid

atomic instructions also explains why a ticket lock performs even better. With a ticket lock

each thread executes exactly two atomic instruction: one during the lock operation and one

during the unlock operations. But with TTAS multiple waiting threads are simultaneously able

to recognize an unlock operation. Although only one thread would be able to acquire the lock

next, all of them would execute an atomicCAS instruction.

MCS achieves good scalability even though the threads are spinning with an atomicCAS, be-

cause each thread executes on a different memory location. Unfortunately, we are not able to

explain why an atomicCAS is even necessary. But in all our tests where MCS was spinning

with a non-atomic instruction the execution got stuck and we had to terminate the execution

manually. This issue needs to be adressed in future work.
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5.2.2 Hash Table

In this section we investigate how the synchronization primitives behave if we use them in

a more realistic workload. Therefore, we adapted similar to ElTantawy and Aamodt [13] the

code from NVIDIA’s CUDA by Example [29], which implements locking on a hash table, and

integrated our lock variations.

We insert 26.2 million key-value pairs. The keys are uniformly distributed. Contention is con-

trolled by the number of hash entries within the hash table. Each hash entries correspond to

a bucket which is implemented by a linked list. New key-value pairs are inserted at the be-

ginning of the corresponding bucket list. We use four different contention levels. The four

levels correspond to the following numbers of hash table entries: 256, 64, 32 and 16. We com-

pare our four lock variations (TAS, TTAS, Ticket, MCS) and a lock-free variation. The lock-free

variation uses atomicCAS to swap pointers directly in order to insert into a bucket list. We ran

our experiments with a grid size of 30 and a block size of 256 which results in 7680 concurrent

threads.

5.2.2.1 Results

The results are shown in Figure 5.5. With low contention (16 hash table entries) execution time

is roughly the same on all tested variants. But with higher levels of contention the differences

become apparent. On our high contention scenario with 16 hash table entries, the MCS is 3.4

times faster than the standard spin lock (TAS). MCS performs even better than the lock-free

implementation. With 32 hash entries Ticket performs on par with MCS and TTAS could catch

up to lock-free. While MCS and Ticket are 1.4 times faster than lock-free respectively TTAS, they

are 3 times faster than TAS. If we lower the contention further (64 hash entries), all variants but

TAS perform equally. With 256 hash entries no variation stands out.

5.2.2.2 Discussion

The results indicate the main performance bottleneck in scaling concurrent accesses is con-

tention. Therefore, high contention should be avoid at all cost. If we cannot avoid high con-

tention, the choice of the synchronization primitive contributes significantly to the overall per-

formance.
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Figure 5.5: Insertion into hash table with different levels of contention (low to high).

5.3 Lock Granularity

Lock granularity determines the potential concurrency. Lock coupling ensures linearizability

with fine-grained locking. It is used to allow concurrent inserts into a sorted linked list or other

order preserving data structures (e.g. B-Tree).

In this section we evaluate the implementation of our synchronization primitives, when used

with lock coupling. Next, we evaluate how coarse-grained locking performs on the same work-

load. Finally, we compare fine-grained with coarse-grained locking.

5.3.1 Setup

We insert 262,000 key-value pairs into an ordered linked list. The list is composed of multiple

ordered sublists. Each sublist holds all keys within a certain range. The last element in each

sublist points to the first element of the next sublist. We call the first element of a sublist entry

point. All entry points are managed by a hash table. The hash function determines for a given

key the corresponding entry point. Is is implemented by a shift right operation. The shift

amount depends on the range a sublist is responsible for. For instance, if a sublist is responsible

for 1024 keys, we need to shift any given key by 10 to the right. In other words, the most

significant bits are used to determine the sublist, whereas the least significant bits determine
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the position in a given sublist.

5.3.2 Lock Coupling

In this section we evaluate our lock variations with lock coupling. Each list element is protected

by its own lock. Each traversing thread holds two locks at most. If a thread holds a lock on a

given list element, lock coupling ensures that this thread is never overtaken by another thread.

But multiple threads are able to traverse the list in a pipelined fashion.

We distinguish a high contention scenario in Figure 5.6 and a low contention scenario in Figure

5.7. We configured the kernel with a grid size of 30 and a block size of 128: 3840 concurrent

threads. In both figures we scale the number of entry points (x-axis): few entry points result

in high contention while many entry points result in low contention. For all lock variations

we observed a step function behaviour. With decreasing contention the performance of the

different lock variations converges. TTAS and TAS perform better than Ticket and MCS2 with

high and low contention.
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Figure 5.6: Lock Coupling: High Contention.

Discussion. In contrast to the previous benchmark, we observed that a more complex lock

implementation does not pay off. Instead, the simple TAS lock performs the best. However,

we could confirm the importance of low contention.
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Figure 5.7: Lock Coupling: Low Contention.

5.3.3 Coarse-Grained Locking

After we measured how our lock variations perform with lock coupling, we are evaluating

them with coarse-grained locking. In this setting we do not protect each list element individu-

ally. Instead we only lock the entry points. If a thread holds a lock, no other thread is able to

insert into the same sublist. We control the level of contention by configuring the number of

entry points. In all scenarios we scale the block size (x-axis). All kernels were run with a grid

size of 30.

The results are shown in Figure 5.8-5.11. In order to differentiate coarse-grained locking and

lock coupling we annotate the lock variation with the suffix “-CG”. In Figure 5.10 and Figure

5.11 we are comparing all lock variations. In Figure 5.8 and Figure 5.9 we omitted TAS-CG,

because of its poor scaling behaviour.

Each plot shows that the runtime is decreasing, if we increase the block size. TTAS reaches

its optimum faster than the others. With a 128 threads per block each lock reaches it optimal

performance. But if we scale the block size further than 256 threads per block, performance

decreases again. With high contention (16 and 32 entry points) the scaling behaviour of TTAS,

MCS2 and Ticket is quite similar, whereas with low contention (64 and 128 entry points) each

lock reacts differently. In the range where all locks reach their optimum (128-256 threads), TTAS

performs better than MCS2 and Ticket. In this range, even TAS is often able to outperform

MCS2 and Ticket.
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Figure 5.8: Coarse Grained Locking: 16 Entry Points, 30 Thread Blocks.
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Figure 5.9: Coarse Grained Locking: 32 Entry Points, 30 Thread Blocks.

5.3.4 Comparison

In our last evaluation we are using TAS and TTAS to compare their performance using lock

coupling with their performance using coarse-grained locking. We chose them because the

previous evaluations indicated their superior performance. We configured the benchmark with
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Figure 5.10: Coarse Grained Locking: 64 Entry Points, 30 Thread Blocks.
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Figure 5.11: Coarse Grained Locking: 128 Entry Points, 30 Thread Blocks.

a fixed grid size of 30 and a block size of 128. Figure 5.10 and Figure 5.11 suggest that both TAS-

CG and TTAS-CG reach their optimal performance with this configuration.

The results of our comparison are shown in Figure 5.12 and Figure 5.13. Figure 5.12 can be

divided into three phases. First, if we have fewer than 64 entry points, lock coupling is up to

2.4 times faster than coarse grained locking. Next, with 64 or more, but less than 128, entry
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Figure 5.12: Coarse Grained Locking and Fine Grained Locking: High Contention.

points lock coupling is on par with coarse grained locking. Finally, with 128 or more entry

points coarse grained-locking is 2.0 times faster than lock coupling. Figure 5.13 can be seen as

a continuation of the third phase: coarse-grained locking remains faster than lock coupling.
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Figure 5.13: Coarse Grained Locking and Fine Grained Locking: Low Contention.
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5.4 Summary

The impact of a given lock variation depends on the given situation. If we have high contention

combined with a very short critical section (e.g. in our Counter benchmark), the ticket lock will

outperform the others. In some workloads, like inserting in a hash table, the performance can

be improved by using a more sophisticated lock implementation (e.g. MCS). But in others a

simple TAS lock achieves the best performance. Finally, increasing the potential concurrency

with fine-grained locking does not necessarily improve performance.
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6 Related Work

This thesis relates to different research areas. We present related work on mutable data struc-

tures first. Next, we summarize the work concerning synchronization on modern in-memory

database systems. Finally, we present related work on GPU Hardware Architecture.

6.1 Mutable Data Structures

Traditionally, GPUs are used to accelerate read-heavy OLAP queries. But the following papers

demonstrate that highly concurrent data structures could be implemented on GPUs as well.

Ashkiani et al. [5] propose a dynamic hash table for GPUs, which allows incremental updates

(such as insertion and deletions). They propose a new work sharing strategy which reduces

branch divergence.

Awad et al. [6] implemented a GPU implementation of a B-Tree that supports concurrent

queries (point, range, successor) and updates (insertion and deletions). They demonstrate that

the key limiter of performance on GPU is contention.

6.2 Synchronization

The following papers investigate synchronization of concurrent data structures used in modern

in-memory database systems. All of them evaluate synchronization on CPUs, whereas our

work evaluate synchronization on GPU with Independent Thread Scheduling.

Leis et al. [21] identified that database systems often use fine-grained locking in order to pro-

tect their data structures. They point out that the performance of transactional database sys-

tems is critically dependent on efficient synchronization. Additionally, they argue that lock-

free synchronization is hard to implement but does scale significantly better than traditional
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fine-grained locking approaches. Finally, they present Optimistic Lock Coupling and Read-

Optimized Write EXclusion (ROWEX), two locking protocols which are both easy to reason

about and achieve high scalability.

The work of Faleiro and Abadi [14] questions the superior scalability of lock-free synchroniza-

tion. They conclude that lock-free synchronization outperforms lock-based synchronization

only when the number of threads exceeds the number of processing cores. But modern main-

memory database systems usually implement a one-to-one mapping between threads and pro-

cessing cores. In such an environment their evaluation shows that lock-free synchronization is

not able to outperform the lock-based alternative. Finally, they identify contention as the main

bottleneck of synchronization.

Wang et al. [33] confirm the difficulty of implementing correct synchronization without locks.

Nevertheless, they were able to improve the performance of the lock-free Bw-Tree, which was

originally proposed by Microsoft Research. Despite their improvements, the Bw-Tree ist not

able perform as well as other concurrent data structures that use locks.

6.3 GPU Hardware Architecture

The hardware architecture on modern GPUs differs significantly from contemporary CPUs.

The research on GPU hardware improvements tries to optimize the performance on throughput

oriented workloads and to increase the general applicability of GPUs.

For instance, ElTantawy and Aamodt [13] recognize fine-grained synchronization as an integral

part of many parallel algorithms. They propose changes to the current GPU hardware to better

support fine-grained synchronization. To evaluate their proposed changes, they used GPGPU-

Sim which provides a detailed simulation model of GPUs running CUDA workloads.

In another paper ElTantawy and Aamodt [12] proposed a static analysis technique that detects

SIMT deadlocks and a Control Flow Graph (CFG) transformation that avoids SIMT deadlocks.

Finally, they propose an hardware reconvergence mechanism that prevents SIMT deadlocks

without a CFG transformation.

Instead of proposing changes to the hardware, we are focusing on contemporary GPU hard-

ware architectures. Therefore, we are able to evaluate different synchronization techniques on

actual GPU hardware.
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7 Conclusion

In this work, we investigated different synchronization techniques and evaluated their perfor-

mance in different scenarios. We investigated Independent Thread Scheduling a new hardware

feature introduced with the Volta microarchitecture. Independent Thread Scheduling increases

programmability by preventing SIMT deadlocks. We demonstrated that it is still necessary to

consider the underlying hardware in order to prevent livelock conditions. Furthermore, we

proposed a technique which is able to prevent livelocks.

Next, we presented four different lock variations: TAS, TTAS, Ticket and MCS. We showed

how the lack of cache coherence and the relaxed memory consistency could be addressed in

order to ensure correct synchronization. Additionally, we proposed MCS2, a modification of

the MCS lock. With MCS2 a thread is able to hold up to two locks simultaneously.

We evaluated the scalability of the presented lock variations. By isolating the effects of con-

tention, we were able to demonstrate that the ticket lock scales the best. Nevertheless, when

used to synchronize concurrent inserts into a hash table, this superior scalability does not re-

sult in better performance. Instead MCS achieved the best performance in such a scenario.

With MCS we were able to achieve a speed up to a factor of 3.4, when compared with TAS.

Furthermore, we showed that under high contention MCS is able to outperform lock-free syn-

chronization. If locking is used to synchronize inserts into a sorted list, we observed that TAS

outperforms MCS.

Finally, in our sorted list benchmark we showed that with high contention and long list sizes

fine-grained locking performs better than coarse-grained locking. But if we increase the con-

tention and decrease the list size respectively, coarse grained locking will outperform fine-

grained locking.
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